首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wheat blast is one of the most important and devastating fungal diseases of wheat in South America, South-east Asia, and now in southern Africa. The disease can reduce grain yield by up to 70% and is best controlled using integrated disease management strategies. The difficulty in disease management is compounded by the lack of durable host resistance and the ineffectiveness of fungicide sprays. New succinate dehydrogenase inhibitor (SDHI) fungicides were recently introduced for the management of wheat diseases. Brazilian field populations of the wheat blast pathogen Pyricularia oryzae Triticum lineage (PoTl) sampled from different geographical regions in 2012 and 2018 were shown to be resistant to both QoI (strobilurin) and DMI (azole) fungicides. The main objective of the current study was to determine the SDHI baseline sensitivity in these populations. Moderate levels of SDHI resistance were detected in five out of the six field populations sampled in 2012 and in most of the strains isolated in 2018. No association was found between target site mutations in the sdhB, sdhC, and sdhD genes and the levels of SDHI resistance, indicating that a pre-existing resistance mechanism not associated with target site mutations is probably present in Brazilian wheat blast populations.  相似文献   

2.
The failure of chemical control of soybean rust has been related to the selection of less sensitive isolates, and the infection capacity of such isolates could have implications for the management of the disease. The aims of the present study were to compare the sensitivity to tebuconazole and azoxystrobin and the monocycle of soybean rust using isolates of Phakopsora pachyrhizi from two soybean fields with different production systems (organic and conventional) in 2012/13 and 2013/14 seasons, and to monitor mutations in the CYP51 gene. To assess the sensitivity to tebuconazole and azoxystrobin, detached leaf tests and in vitro germination, respectively, were used. To evaluate the monocycle, detached leaves were inoculated with a urediniospore suspension and evaluated daily by counting the number of uredia. The occurrence of the mutations in CYP51 was investigated by a pyrosequencing assay. In both 2012/13 and 2013/14 seasons, the EC50 to tebuconazole was lower for the population from the organic system (0.41 and 0.10 μg mL?1, respectively) compared to the conventional system (1.60 and 4.44 μg mL?1, respectively), while the EC50 to azoxystrobin was similar for both populations. The lower sensitivity to tebuconazole and azoxystrobin was associated with F120L + Y131H mutations in CYP51, and the F129L mutation in CYTB, respectively. The monomolecular model fitted to monocycle data and parameters related to the maximum asymptote and the AUDPC were superior for organic than the conventional system.  相似文献   

3.
Sensitivity of field isolates (121) ofBotrytis cinerea from France (1992), Germany (1979–1992), Israel (1990) and the Netherlands (1970–1989) to the triazoles tebuconazole and triadimenol, the benzimidazole benomyl and the dicarboximide vinclozolin were tested in radial growth experiments. Resistance to benomyl (in 21 to 100% of isolates tested) and vinclozolin (in 25 to 71% of isolates tested) was common in most countries. EC50s (concentrations of fungicides inhibiting radial mycelial growth ofB. cinerea on B5-agar by 50%) for tebuconazole and triadimenol ranged between 0.01–1.64 and 0.4–32.6g ml–1, respectively, and were log-normally distributed. The variation factor (ratio between EC50s of the least and most sensitive isolate tested) amounts 164 and 82 for tebuconazole and triadimenol, respectively. These values are comparable to those for azole fungicides applied in control of other pathogens. Hence, variation in sensitivity to triazoles can probably not explain limited field performance of triazoles towardsB. cinerea. Isolates from south west Germany (1992) were significantly less sensitive to tebuconazole than isolates collected earlier in Germany, Israel and the Netherlands. Such less sensitive populations may contribute to the limited field performance of DMI fungicides towardsB. cinerea. The sensitivity of isolates from south west Germany to tebuconazole was similar to that of DMI-resistant mutants generated in the laboratory. These mutants displayed stable resistance with Q-values (ratio between EC50 of resistant mutant and wild type isolate) between 5 and 20. Sensitivity of field isolates and laboratory mutants to tebuconazole and triadimenol was correlated.  相似文献   

4.
BACKGROUND: The recent evolution towards resistance to azole fungicides in European populations of the wheat pathogen Mycosphaerella graminicola has been caused by the progressive accumulation of mutations in MgCYP51 gene, encoding the azole target sterol 14α‐demethylase. Particular combinations of mutations have been shown specifically to affect the interaction of the MgCYP51 protein with different members of the azole class. Although additional mechanisms, including increased MgCYP51 expression and enhanced active efflux, have been proposed, the genetic changes underlying these mechanisms are unknown. RESULTS: Analysis of the azole sensitivities of recent M. graminicola isolates identified a novel phenotype, seemingly independent of changes in MgCYP51 coding sequence. Characterised by a 7‐16‐fold reduction in in vitro sensitivity to all azoles tested and by growth on seedlings at higher doses of azoles in glasshouse tests compared with isolates carrying the same MgCYP51 variant (L50S, S188N, I381V, ΔY459/G460, N513K), isolates with this phenotype constitutively overexpress MgCYP51 by between 10‐ and 40‐fold compared with the wild type. Analysis of sequences upstream of the predicted MgCYP51 translation start codon identified a novel 120 bp indel, considered to be an insertion, in isolates overexpressing MgCYP51. CONCLUSIONS: The identification of an insertion in the predicted MgCYP51 promoter in azole‐resistant isolates overexpressing MgCYP51 is the first report of a genetic mechanism, other than changes in target‐site coding sequence, affecting sensitivity to multiple azoles in field isolates of M. graminicola. The identification of recent isolates overexpressing MgCYP51 confirms the ongoing evolution and diversification of resistance mechanisms in European populations of M. graminicola. Copyright © 2012 Society of Chemical Industry  相似文献   

5.
Azole resistance in human fungal pathogens has increased over the past twenty years, especially in immunocompromised patients. Similarities between medical and agricultural azoles, and extensive azole (14α‐demethylase inhibitor, DMI) use in crop protection, prompted speculation that resistance in patients with aspergillosis originated in the environment. Aspergillus species, and especially Aspergillus fumigatus, are the largest cause of patient deaths from fungi. Azole levels in soils following crop spraying, and differences in sensitivity between medical and agricultural azoles (DMIs), indicate weaker selection in cropping systems than in patients receiving azole therapy. Most fungi have just one CYP51 paralogue (isozyme CYP51B), but in Aspergillus sp. mutations conferring azole resistance are largely confined to a second paralogue, CYP51A. Binding within the active centre is similar for medical and agricultural azoles but differences elsewhere between the two paralogues may ensure selection depends on the DMI used on crops. Two imidazoles, imazalil and prochloraz, have been widely used since the early 1970s, yet unlike triazoles they have not been linked to resistance in patients. Evidence that DMIs are the origin, or increase the frequency, of azole resistance in human fungal pathogens is lacking. Limiting DMI use would have serious impacts on disease control in many crops, and remove key tools in anti‐resistance strategies. © 2017 Society of Chemical Industry  相似文献   

6.
Fusarium verticillioides reduces corn yield and contaminates infected kernels with the toxin fumonisin, which is harmful to humans and animals. Previous research has demonstrated that F. verticillioides can be controlled by the azole fungicide prochloraz. Currently, prochloraz is used as a foliar spray to control maize disease in China, which will increase the risk of resistance. Although F. verticillioides resistance to prochloraz has not been reported in the field, possible resistance risk and mechanisms resulting in prochloraz resistance were explored in the laboratory. Four prochloraz‐resistant strains of F. verticillioides were generated by successive selection on fungicide‐amended media. The mycelial growth rates of the mutants were inversely related to the level of resistance. All four mutants were cross‐resistant to the triazole fungicides triadimefon, tebuconazole and difenoconazole, but not to the multisite fungicide chlorothalonil or to the MAP/histidine‐kinase inhibitor fungicide fludioxonil. Based on the Y123H mutation in FvCYP51B, the four resistant mutants were subdivided into two genotypes: PCZ‐R1 mutants with wildtype FvCYP51B and PCZ‐R2 mutants with substitution Y123H in FvCYP51B. Wildtype FvCYP51B complemented the function of native ScCYP51 in Saccharomyces cerevisiae YUG37::erg11, whereas Y123H‐mutated FvCYP51B did not. For the PCZ‐R1 mutants, induced expression of FvCYP51A increased resistance to prochloraz. For the PCZ‐R2 mutants, disruption of FvCYP51B function by the Y123H substitution caused constitutive up‐regulation of FvCYP51A expression and thus resistance to prochloraz.  相似文献   

7.
Two hundred isolates ofBotrytis cinerea were collected from greenhouse vegetables between 2003 and 2006 to determine their baseline sensitivity to triadimefone, penconazole, tebuconazole and fenhexamid. Mean values of 50% effective concentrations (EC50) of inhibiting growth were 4.853±5.102, 0.41±0.215, 0.19±0.099 and 0.36±0.891 mgl −1, respectively (mean±SD). Individuals ofB. cinerea in the population differed by a factor (EC50 of the least sensitive isolate/EC50 of the most sensitive isolate) of 6625, 20, 603 and 1800, respectively. Naturally fenhexamid-resistant isolates were detected with an unexpected high frequency of 10% although the pathogen population had never been exposed to this fungicide. The resistance level (mean EC50 of resistant isolates / mean EC50 of sensitive isolates) was 19.5. These naturally resistant isolates also were resistantin vivo, and there was no significant difference in growth rate, conidial production or pathogenicity ability between naturally resistant and wild sensitive isolates. These results indicated that there was a potential risk of practical resistance if fenhexamid was applied alone. Negative cross-resistance was observed between fenhexamid and tebuconazole in 90% of the naturally resistant isolates. Moreover, an obvious synergism of the antifungal activity of fenhexamid by tebuconazole was demonstrated in some of the naturally fenhexamid-resistant isolates. http://www.phytoparasitica.org posting May 9, 2007.  相似文献   

8.
Although fungicide resistance in crop pathogens is a global threat to food production, surprisingly little is known about the evolutionary processes associated with the emergence and spread of fungicide resistance. Early stages in the evolution of fungicide resistance were evaluated using the wheat pathogen Zymoseptoria tritici, taking advantage of an isolate collection spanning 20 years in Oregon, USA, and including two sites with differing intensity of fungicide use. Sequences of the mitochondrial cytb protein conferring single‐mutation resistance to QoI fungicides and the nuclear CYP51 gene implicated in multiple‐mutation resistance to azole fungicides were analysed. Mutations associated with resistance to both fungicides were absent in the 1992 isolates, but frequent in the 2012 collection, with higher frequencies of resistance alleles found at the field site with more intensive fungicide use. Results suggest that the QoI resistance evolved independently in several lineages, and resulted in significant mitochondrial genome bottlenecks. In contrast, the CYP51 gene showed signatures of diversifying selection and intragenic recombination among three phylogenetic clades. The findings support a recent emergence of resistance to the two fungicide classes in Oregon, facilitated by selection for mutations in the associated resistance genes.  相似文献   

9.
桃褐腐病菌(Monilinia fructicola)对3种杀菌剂的敏感性   总被引:1,自引:0,他引:1  
采用生长速率法测定了采自北京平谷区3个桃园的125株桃褐腐病菌对甲基硫菌灵、戊唑醇和异菌脲3种杀菌剂的敏感性,发现甲基硫菌灵对桃褐腐病菌的EC50主要分布在1.0×10-5~0.2μg/mL,戊唑醇对桃褐腐病菌的EC50主要分布在0.006~0.022μg/mL之间。异菌脲对桃褐腐病菌的EC50主要分布在0.15~0.55μg/mL之间。研究结果表明,北京地区的桃褐腐病菌对这3种杀菌剂都比较敏感,未产生明显的抗药群体。建立了褐腐病菌对异菌脲抗药性的敏感基线。而且,数据分析表明:甲基硫菌灵、戊唑醇和异菌脲之间均不存在交互抗性。  相似文献   

10.
Pyrenopeziza brassicae causes leaf spot disease of Brassicaceae in Europe/Oceania (lineage 1) and North America (lineage 2). In Europe, fungicides currently used for disease management are sterol 14α-demethylase (CYP51) inhibitors (azoles), quinone outside inhibitors (QoIs), and succinate dehydrogenase inhibitors (SDHIs); methyl benzimidazole carbamates (MBCs) are no longer applied. In this study, in vitro screening revealed European populations (collected 2018–2020) had shifted towards decreased azole sensitivity, but the North American population (2014–2016) was highly sensitive. Genotyping revealed CYP51 substitutions G460S or S508T were prevalent in European populations, often with a CYP51 promoter insert. Compared to wildtype CYP51 isolates, those with G460S plus an insert (44/46/151/210/302 bp) were c.25–32-fold and c.50-fold less sensitive to tebuconazole and prochloraz, respectively; those with S508T plus an insert (44/46/151/233 bp) were c.9–15-fold and c.25–40-fold less sensitive to tebuconazole and prochloraz, respectively. Selection for G460S (quantified via pyrosequencing) under different fungicide regimes was investigated in UK field trials, but G460S levels were high (c.76%) before treatment, so further selection during the trials was unclear. Despite the high G460S frequency and low disease pressure, yield data indicated measurable benefit for both azole- and non-azole-based programmes. In vitro screening against the MBC carbendazim showed European populations were predominantly moderately resistant/resistant; the North American population was sensitive. European and North American populations were sensitive to QoI (pyraclostrobin) and SDHI (penthiopyrad) fungicides. Results support an azole plus QoI/SDHI mixing partner for robust disease control and decreased risk of resistance, with continued sensitivity monitoring to ensure optimal strategies are deployed.  相似文献   

11.
C. Zhang  H. Wu  X. Li  H. Shi  F. Wei  G. Zhu 《Plant pathology》2013,62(6):1378-1383
During 2009–2010, a total of 323 isolates of Xanthomonas oryzae pv. oryzae were obtained from rice with symptoms of bacterial leaf blight (BLB) in four provinces (Zhejiang, Jiangsu, Anhui and Hubei) in China. These isolates were tested for baseline sensitivity to zinc thiazole, a novel bactericide with strong antibacterial activity against Xanthomonas. The sampled pathogenic population had similar sensitivity to zinc thiazole (0·1–16·8 mg L?1) in all four regions and over the whole two‐year study period. The baseline sensitivity was distributed as a unimodal curve with a mean EC50 value of 6·79 ± 1·61 mg L?1. The risk of mutation to resistance of zinc thiazole in X. oryzae pv. oryzae was further evaluated in vitro and in vivo. Twelve zinc thiazole‐resistant mutants were obtained through ultraviolet (UV) irradiation, culturing on zinc thiazole‐amended nutrient agar (NA) plates, and culturing on zinc thiazole‐treated rice plants. These zinc thiazole‐resistant mutants had resistance factors (RF = EC50 value of a mutant / EC50 value of the wildtype parent of this mutant) of 12·4 to 186·1 with a mean RF value of 44·1. Mutants obtained via UV irradiation, culturing on NA plates and culturing on rice plants had mean RF values of 51·8, 24·5 and 14·4, respectively. All mutants showed decreases in resistance to zinc thiazole after 20 successive transfers on bactericide‐free media or 10 successive inoculation–reisolations on bactericide‐free rice plants. No significant difference was found in bacterial growth and sensitivity to bismerthiazol between zinc thiazole‐resistant mutants and their parents. However, a significant decrease was observed in the pathogenicity of zinc thiazole‐resistant mutants compared with their parents, especially for mutants obtained via UV irradiation.  相似文献   

12.
Field experiments, involving various fungicide strategies with pyraclostrobin and/or epoxiconazole were carried out in 2004 and 2005, with the overall purpose of monitoring the evolution of fungicide sensitivity in Mycosphaerella graminicola on different isolates per leaf, leaf levels at different points of time, and points in the field. Sensitivity was assessed on single isolates by means of epoxiconazole EC50-values, and monitoring of the G143A-mutation, which confers strobilurin resistance. In both years, fungicide application strategies did not cause any significant shifts in epoxiconazole sensitivity of the population median or variance over time compared to the starting population. In 2004, the end-population median was the same for all sprayed strategies, although compared to untreated median sensitivities were higher. In 2005, epoxiconazole sensitivity levels were similar on individual flag leaves and different points in the field. Measured on all isolates the EC50-values ranged from 0.007–1.15 mg l−1. In 2004, due to the high initial level of pyraclostrobin resistance, stabilisation of pyraclostrobin resistance was observed following the various combination treatments. No correlation between epoxiconazole sensitivities and pyraclostrobin resistance were observed. High input strategies using a mixture of epoxiconazole and pyraclostrobin resulted in the best control and yield response. A subpopulation of the isolates from 2004 was also screened for sensitivity towards five different triazoles of which tebuconazole proved to be least sensitive, and this could further be split into two subpopulations.  相似文献   

13.
A series of novel 6-(1,2,4-triazol-4-yl) chromone and -1-thiochromone (benzo[b]thiazin-4-one) derivatives was obtained by cyclisation via thiosemicarbazides which were prepared by reaction of hydrazines and the corresponding isothiocyanates. Their fungicidal activity was evaluated against the rice blast fungus Pyricularia oryzae. Of this series, 2,5,8-trimethyl-6-(1-propyl-5-thioxo-3-trifluoromethyl-1,2,4-triazol-4-yl) chromone, 6-(1-butyl-5-thioxo-3-trifluoromethyl-1,2,4-triazol-4-yl)-2,5,8-trimethylchromone, 6-(1-hexyl-3-methyl-5-thioxo-1,2,4-triazol-4-yl)-2,5,8-trimethylchromone and 6-(1-allyl-5-thioxo-3-trifluoromethyl-1,2,4-triazol-4-yl)-2,5,8-trimethylchromone were highly active (pEC50>6·0). Structure–activity relationship studies using the capacity factor k′ as a hydrophobicity index suggested that the log k′ optimum for 2,5,8-trimethyl-chromone and -1-thiochromone derivatives was around 1·0, equivalent to a log Pow value of c. 4·4. © 1998 SCI  相似文献   

14.
Rice blast caused by Pyricularia oryzae is one of the most destructive rice diseases worldwide. In this study, 224 isolates were isolated from neck blast samples from nine districts in Jiangsu. We analysed the resistance frequency of 24 resistance (R) genes using 32 monogenic rice lines from the International Rice Research Institute (IRRI), including Pii, Pik-h, Pi5, Piz-5, and Piz, which exhibit high resistance frequencies. PAC (pathogenicity association coefficients) and VAC (virulence association coefficients) analyses identified three combinations of R genes, Piz/Pii, Piz/Piz-5, and Piz/Pi5, as being suitable for use in Jiangsu. Mating-type analysis of P. oryzae isolates indicated that sexual reproduction occurred less frequently in northern Jiangsu than in other areas, which may affect genetic diversity and dissemination. Pot2-TIR analysis indicated that the genetic diversity of P. oryzae in Xuzhou was mainly due to the insertion of transposable elements, while that of Nanjing was due to both the insertion of transposable elements and sexual recombination. Therefore, some R genes or gene combinations were suitable for resistance breeding in Jiangsu, and repetitive-PCR (rep-PCR) is a cost-effective tool for genetically differentiating distinct cultivar-specific populations or lineages with well-defined virulence patterns, because of the close correspondence between rep-PCR based clusters and pathotypes of inbred lines.  相似文献   

15.
16.
Wheat blast caused by Magnaporthe oryzae Triticum causes significant losses on wheat during outbreak years in several South American countries. Despite reports of wheat blast leaf lesions on some wheat cultivars, the importance of inoculum originating from leaves in severely affected commercial fields is disputed. It is generally considered that leaf lesions and/or sporulation on leaves do not usually appear before the occurrence of spike blast in wheat. The purpose of this study was to (i) determine the occurrence of wheat blast on basal leaves, (ii) estimate the number of conidia produced on these leaves, and (iii) determine the impact of current fungicide application practices on inoculum produced from sporulating lesions on basal wheat leaves. Inoculations at the three‐leaf stage showed that certain cultivar and isolate combinations caused more disease on old wheat leaves than young expanding leaves. Under optimum conditions, M. oryzae had the potential to produce tens to hundreds of thousands of conidia on small amounts of wheat basal leaves. A mean of 1 669 000 conidia were produced on 1 g dry basal leaves of a highly susceptible cultivar under optimum conditions for sporulation. Conidia production on leaves coincided with spike emergence under both greenhouse and field conditions. When field studies were conducted under natural epidemic conditions, foliar fungicide applications reduced the amount of M. oryzae conidia on basal leaves by 62–77% compared to non‐sprayed controls. An earlier application of foliar fungicides might reduce inoculum if conidia from basal leaves contribute to wheat spike blast development.  相似文献   

17.
Azole resistance is an emerging problem in the opportunistic mould Aspergillus fumigatus. The triazoles are the most important agents for the management of Aspergillus diseases in humans. Selection for acquired resistance may occur in the hospital setting through exposure to high doses of azoles during azole therapy, but evidence is accumulating that A. fumigatus may become resistant to medical triazoles through environmental exposure to fungicides. The recovery of A. fumigatus isolates resistant to the medical triazoles from azole‐naive patients as well as from the environment strongly indicates an environmental route of resistance selection. Molecule alignment studies have identified five fungicides that share a very similar molecule structure with the medical triazoles, and thus may have selected for mechanisms that confer resistance to both groups of compounds. It is important to explore further the presumed fungicide‐driven route of resistance selection in order to implement effective preventive measures as the prevalence of azole resistance in A. fumigatus continues to increase and causes major challenges in the management of azole‐resistant Aspergillus diseases. Copyright © 2012 Society of Chemical Industry  相似文献   

18.
19.
Plant fungal pathogens can have devastating effects on a wide range of crops, including cereals and fruit (such as wheat and grapes), causing losses in crop yield, which are costly to the agricultural economy and threaten food security. Azole antifungals are the treatment of choice; however, resistance has arisen against these compounds, which could lead to devastating consequences. Therefore, it is important to understand how these fungicides are used and how the resistance arises in order to tackle the problem fully. Here, we give an overview of the problem and discuss the mechanisms that mediate azole resistance in agriculture (point mutations in the CYP51 amino acid sequence, overexpression of the CYP51 enzyme and overexpression of genes encoding efflux pump proteins). © 2015 Society of Chemical Industry  相似文献   

20.
This review summarises recent investigations into the molecular mechanisms responsible for the decline in sensitivity to azole (imidazole and triazole) fungicides in European populations of the Septoria leaf blotch pathogen, Mycosphaerella graminicola. The complex recent evolution of the azole target sterol 14α‐demethylase (MgCYP51) enzyme in response to selection by the sequential introduction of progressively more effective azoles is described, and the contribution of individual MgCYP51 amino acid alterations and their combinations to azole resistance phenotypes and intrinsic enzyme activity is discussed. In addition, the recent identification of mechanisms independent of changes in MgCYP51 structure correlated with novel azole cross‐resistant phenotypes suggests that the further evolution of M. graminicola under continued selection by azole fungicides could involve multiple mechanisms. The prospects for azole fungicides in controlling European M. graminicola populations in the future are discussed in the context of these new findings. Copyright © 2012 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号