首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Low efficiency of somatic cell nuclear transfer (SCNT) embryos is largely attributable to imperfect reprogramming of the donor nucleus. The differences in epigenetic reprogramming between female and male buffalo cloned embryos remain unclear. We explored the effects of donor cell sex differences on the development of SCNT embryos. We and then compared the expression of DNA methylation (5‐methylcytosine‐5mC and 5‐hydroxymethylcytosine‐5hmC) and the expression level of relevant genes, and histone methylation (H3K9me2 and H3K9me3) level in SCNT‐♀ and SCNT‐♂ preimplantation embryos with in vitro fertilization (IVF) counterparts. In the study, we showed that developmental potential of SCNT‐♀ embryos was greater than that of SCNT‐♂ embryos (< 0.05). 5mC was mainly expressed in SCNT‐♀ embryos, whereas 5hmC was majorly expressed in SCNT‐♂ embryos (< 0.05). The levels of DNA methylation (5mC and 5hmC), Dnmt3b, TET1 and TET3 in the SCNT‐♂ embryos were higher than those of SCNT‐♀ embryos (< 0.05). In addition, there were no significant differences in the expression of H3K9me2 at eight‐stage of the IVF, SCNT‐♀ and SCNT‐♂embryos (< 0.05). However, H3K9me3 was upregulated in SCNT‐♂ embryos at the eight‐cell stage (< 0.05). Thus, KDM4B ectopic expression decreased the level of H3K9me3 and significantly improved the developmental rate of two‐cell, eight‐cell and blastocysts of SCNT‐♂ embryos (< 0.05). Overall, the lower levels of DNA methylation (5mC and 5hmC) and H3K9me3 may introduce the greater developmental potential in buffalo SCNT‐♀ embryos than that of SCNT‐♂ embryos.  相似文献   

2.
Spermatogonial stem cells (SSC) are promising resources for genetic preservation and restoration of male germ cells in humans and animals. However, no studies have used SSC as donor nuclei in pig somatic cell nuclear transfer (SCNT). This study investigated the potential for use of porcine SSC as a nuclei donor for SCNT and developmental competence of SSC‐derived cloned embryos. In addition, demecolcine was investigated to determine whether it could prevent rupture of SSC during SCNT. When the potential of SSC to support embryonic development after SCNT was compared with that of foetal fibroblasts (FF), SSC‐derived SCNT embryos showed a higher (p < .05) developmental competence to the blastocyst stage (47.8%) than FF‐derived embryos (25.6%). However, when SSC were used as donor nuclei in the SCNT process, cell fusion rates were lower (p < .05) than when FF were used (61.9% vs. 75.8%). Treatment of SSC with demecolcine significantly (p < .05) decreased rupture of SSC during the SCNT procedure (7.5% vs. 18.8%) and increased fusion of cell‐oocyte couplets compared with no treatment (74.6% vs. 61.6%). In addition, SSC‐derived SCNT embryos showed higher blastocyst formation (48.4%) than FF‐derived embryos without (28.4%) and with demecolcine treatment (17.4%), even after demecolcine treatment. Our results demonstrate that porcine SSC are a desirable donor cell type for production of SCNT pig embryos and that demecolcine increases production efficiency of cloned embryos by inhibiting rupture of nuclei donor SSC during SCNT.  相似文献   

3.
Until now, the efficiency of animal cloning by somatic cell nuclear transfer (SCNT) has remained low. Efforts to improve cloning efficiency have demonstrated a positive role of trichostatin A (TSA), an inhibitor of deacetylases, on the development of nuclear transfer (NT) embryos in many species. Here, we report the effects of TSA on pre‐implantation development of porcine NT embryos. Our results showed that treatment of reconstructed porcine embryos with 50 nmol/L TSA for 24 h after activation significantly improved the production of blastocysts (P < 0.05), while treating donor cells with the same solution resulted in increases in cleavage rates and blastomere numbers (P < 0.05). However, TSA treatment of both donor cells and SCNT embryos did not improve blastocyst production, nor did it increase blastomere numbers. Using indirect immunofluorescence, we found that TSA treatment of NT embryos could improve the reprogramming of histone acetylation at lysine 9 of histone 3 (H3K9) and affect nuclear swelling of transferred nuclei. However, no apparent effect of TSA treatment on H3K9 dimethylation (H3K9me2) was observed. These findings suggest a positive effect of TSA treatment (either treating NT embryos or donor cells) on the development of porcine NT embryos, which is achieved by improving epigenetic reprogramming.  相似文献   

4.
Conventional somatic cell nuclear transfer (SCNT) technique of in vitro production of cloned embryos involves use of costly and complicated micromanipulators. Handmade cloning (HMC) technique has been applied as efficient and cost‐effective alternative in many livestock species. The aim of the present study was to compare the efficiency of in vitro production and in vitro development of cloned sheep embryos by the two techniques. Cloned embryos were produced by conventional SCNT using micromanipulator apparatus and by HMC technique. Enucleation efficiency and efficiency of fusion with somatic cell (nucleus donor) were compared. Cleavage percentage was observed on day 2 of in vitro culture (IVC), and morula and blastocyst percentages were calculated on day 7 of IVC. Higher enucleation efficiency (96.98 ± 1.01 vs. 93.62 ± 1.03; p > .05) as well as fusion efficiency was obtained with HMC technique than with conventional SCNT (96.26 ± 1.34 vs. 92.63 ± 0.70, p < .05); 181 cloned sheep embryos were produced in vitro by conventional SCNT and 92 by HMC. Cleavage percentage observed on day 2 of in vitro culture was higher in HMC than SCNT (66.92 ± 3.72 vs. 55.97 ± 2.5, respectively, p < .05). Morula percentage obtained was higher in SCNT than HMC (44.12 ± 2.93 vs. 30.43 ± 6.79, respectively, p < .05), whereas blastocyst percentage obtained by HMC was higher (12.46 ± 4.96) than SCNT (5.31 ± 2.25; p > .05). It was inferred that HMC technique provides a cost‐effective and efficient method of in vitro production of cloned sheep embryos with a comparatively simpler technique with a possibility of automation. Efficiency of cloned embryo production could be improved further by propagating and standardizing this technique.  相似文献   

5.
Incomplete or aberrant reprogramming of nuclear genome is one of the major problems in somatic cell nuclear transfer. In this study, we studied the effect of histone deacetylase inhibitor m‐carboxycinnamic acid bishydroxamide (CBHA) on in vitro development of buffalo embryos produced by Hand‐made cloning. Cloned embryos were treated with CBHA (0, 5, 10, 20 or 50 μM) for 10 hr from the start of reconstruction till activation. At 10 μM, but not at other concentrations examined, CBHA increased (p < .05) the blastocyst rate (63.77 ± 3.97% vs 48.63 ± 3.55%) and reduced (p < .05) the apoptotic index of the cloned blastocysts (8.91 ± 1.94 vs 4.36 ± 1.08) compared to untreated controls, to levels similar to those in IVF blastocysts (4.78 ± 0.74). CBHA treatment, at all the concentrations examined, increased (p < .05) the global level of H3K9ac in cloned blastocysts than in untreated controls to that observed in IVF blastocysts. Treatment with CBHA (10 μM) decreased (p < .05) the global level of H3K27me3 in cloned blastocysts than in untreated controls but it was still higher (p < .05) than in IVF blastocysts. CBHA (10 μM) treatment increased (p < .05) the relative expression level of pluripotency‐related genes OCT‐4 and NANOG, and anti‐apoptotic gene BCL‐XL, and decreased (p < .05) that of pro‐apoptotic gene BAX than in untreated controls but did not affect the relative expression level of apoptosis‐related genes p53 and CASPASE3 and epigenetics‐related genes DNMT1, DNMT3a and HDAC1. These results suggest that treatment of cloned embryos with 10 μM CBHA improves the blastocyst rate, reduces the level of apoptosis and alters the epigenetic status and gene expression pattern.  相似文献   

6.
Monomeric Plum (Plum), a far-red fluorescent protein with photostability and photopermeability, is potentially suitable for in vivo imaging and detection of fluorescence in body tissues. The aim of this study was to generate transgenic cloned pigs exhibiting systemic expression of Plum using somatic cell nuclear transfer (SCNT) technology. Nuclear donor cells for SCNT were obtained by introducing a Plum-expression vector driven by a combination of the cytomegalovirus early enhancer and chicken beta-actin promoter into porcine fetal fibroblasts (PFFs). The cleavage and blastocyst formation rates of reconstructed SCNT embryos were 81.0% (34/42) and 78.6% (33/42), respectively. At 36–37 days of gestation, three fetuses systemically expressing Plum were obtained from one recipient to which 103 SCNT embryos were transferred (3/103, 2.9%). For generation of offspring expressing Plum, rejuvenated PFFs were established from one cloned fetus and used as nuclear donor cells. Four cloned offspring and one stillborn cloned offspring were produced from one recipient to which 117 SCNT embryos were transferred (5/117, 4.3%). All offspring exhibited high levels of Plum fluorescence in blood cells, such as lymphocytes, monocytes and granulocytes. In addition, the skin, heart, kidney, pancreas, liver and spleen also exhibited Plum expression. These observations demonstrated that transfer of the Plum gene did not interfere with the development of porcine SCNT embryos and resulted in the successful generation of transgenic cloned pigs that systemically expressed Plum. This is the first report of the generation and characterization of transgenic cloned pigs expressing the far-red fluorescent protein Plum.  相似文献   

7.
The objective of this study was to examine the effects of canthaxanthin (Cx) treatment during in vitro maturation (IVM) of porcine oocytes on embryonic development after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT), on intracellular glutathione (GSH) and reactive oxygen species (ROS) levels in mature oocytes, and on gene expression in both PA‐ and SCNT‐derived blastocysts. To determine the optimal effective concentration of Cx, porcine oocytes were cultured in IVM medium supplemented with various concentrations (0, 20, 40 and 80 μM) of Cx for 22 hr. Compared to other groups, supplementation with 40 μM Cx significantly improved blastocyst formation rates after PA (< .05), but no significant differences were observed among groups in total blastocyst cell numbers. Subsequently, oocytes were cultured in IVM medium supplemented with or without 40 μM Cx. Oocytes treated with 40 μM Cx showed significantly increased cleavage and blastocyst formation rates after SCNT compared to the control group (< .05). Moreover, significantly increased intracellular GSH and reduced ROS levels were observed in the Cx‐treated group (< .05). In addition, both PA‐ and SCNT‐derived blastocysts from the 40 μM Cx‐treated group showed significantly increased mRNA expression of Bcl2 and Oct4 and decreased Caspase3 expression level (< .05), when compared with the control group. PA‐derived blastocysts from the 40 μM Cx‐treated group also exhibited significantly decreased expression of Bax (< .05). Our results demonstrated that treatment with 40 μM Cx during IVM improves the developmental competence of PA and SCNT embryos. Improvement of embryo development by Cx is most likely due to increased intracellular GSH synthesis, which reduces ROS levels in oocytes, and it may also positively regulate apoptosis‐ and development‐related genes.  相似文献   

8.
This study mainly explored the effects of Rapamycin on the growth of the Buffalo ear fibroblast (BEF) and embryonic developmental competence of somatic cell nuclear transfer (SCNT). The results show that the appropriate concentration (1 μM) of Rapamycin could significantly improve the proportion of the G0/G1 phase in BEF cells treated at a certain time (72 hr). Simultaneously, the percentage of the G0/G1 phase also was significantly higher than the serum starvation and control group. This may be related to Rapamycin inhibiting the phosphorylation of mTOR and affecting the expression of cell cycle-related genes (CDK2, CDK4, P27, CycleD1, and CycleD3). Besides, compared with the control group and serum-starved group, Rapamycin significantly decreased BEF cell apoptosis by reducing ROS generation. Moreover, these results also indicated that the proportion of BEF cells with normal chromosome multiples treated by Rapamycin is significantly higher than that of the serum-starved group (p < .05). Finally, this study explored the effects of Rapamycin and serum starvation on the embryonic developmental competence of SCNT. The results show that Rapamycin significantly increased the rate of 8-cell and blastocyst, compared with the control group and serum starvation group (p < .05). To summarize, these results indicate that Rapamycin improved the embryonic development competence of SCNT, which may be related to Rapamycin increasing the percentage of G0/G1 phase and maintaining BEF cell quality.  相似文献   

9.
The pterostilbene (PT) molecule is a phytoalexin with a reducing effect on reactive oxygen species (ROS) and with a capacity to block lipogenesis. However, the potential reducing effects of PT on equatorial lipid accumulation and ROS have not yet been elucidated for in vitro-derived bovine embryos. The present study evaluated the effects of concentrations of 3, 1, 0.33, 0.11 μM PT, and a vehicle group on the percentage of cleaved embryos, embryos with more than 6 cells, percentage of blastocyst on Day 7 and 8, percentage of transferable embryos on Day 7, the cell count and relative concentration of lipids. In the second experiment, the effects of 0.33 μM PT and a vehicle group within two different O2 environments (5% and 20%) were evaluated for ROS generation and the percentage of Day 8 blastocysts. In the first experiment, no significant differences were found between the treatments with PT and the vehicle group (p > .05) concerning the percentage of cleaved embryos and embryos with more than 6 cells. Lipid reduction was observed in the groups treated with PT versus the vehicle group (p < .05). The vehicle group showed a higher rate of blastocyst production on Days 7 and 8 (p < .05) and an increase in the percentage of transferable embryos on Day 7 compared to the PT treatment groups (p < .05). Cell counts were not significantly different between treatments with PT and the vehicle group (p > .05). In the second experiment, the O2 concentration did not significantly affect ROS generation (p > .05); however, the groups treated with PT (0.33 μM) had a reduction in ROS (p < .05). The O2 concentration also did not significantly affect the rate of blastocyst production on Day 8 (p = .7696). Future research should be conducted to ascertain whether the reduction of lipids could enhance the cryopreservation and post-thaw viability of PT-treated embryos.  相似文献   

10.
SUMOylation is a dynamic post-translational modification process. However, the function of small ubiquitin-like modifiers (SUMOs) in the maturation of porcine oocytes and embryo growth is not well known. Therefore, the aim of this study was to investigate the effect of E2 binding enzyme UBC9 on the expression of SUMO-1 protein during the in vitro maturation of porcine oocytes and embryo development after in vitro fertilization. Four groups were used: 0 (Control), 5, 10 and 15 µg/ml UBC9. Western blotting, flow cytometry and RT-qPCR were used to detect the in vitro maturation of porcine oocytes, SUMO-1 content, viability and the expression of apoptotic genes. Compared to those in the control treatment, the maturation rate (p < .05) and viability (p < .01) of oocytes in the 5 μg/ml treatment group decreased significantly. SUMO-1 protein markers appeared at 59 and 71 kDa and the content of SUMO-1 protein in the 10 µg/ml treatment group decreased significantly (p < .05). In the expression of apoptosis-related genes, Bcl-2 gene expression was significantly downregulated in the 10 μg/ml treatment group (p < .05). However, Bax and Caspase-3 were significantly upregulated in the 5 μg/ml treatment group (p < .05). During embryonic development, the cleavage rate of oocytes in the 10 µg/ml treatment group was significantly reduced (p < .05), whereas blastocyst formation rate in the 5 µg/ml treatment group was significantly reduced. UBC9 regulates SUMO-1 content in mature pig oocytes in vitro, which affects oocyte maturation rate, viability, apoptotic genes expression and embryo development after fertilization.  相似文献   

11.
The kodkod population is in constant decrease and the somatic cell nuclear transfer (SCNT) might help to preserve the genetic pool of this species. The cell cycle synchronization of donor cells plays a crucial role in SCNT. The objective of this research was to evaluate two different methods for quiescence induction, serum starvation (SS) and contact inhibition (CI), both for 1, 3 and 5 days, on skin fibroblast from domestic cat and kodkod. Flow cytometry analysis revealed that in domestic cat, SS and CI, both at 3 and 5 days, increased the percentage of fibroblasts in G0/G1 compared to growing cells (GC) (p < .05). In kodkod, only SS for 3 and 5 days and CI for 1 and 3 days increased the percentage of fibroblasts in G0/G1 compared to GC (p < .05). Viability analysis by differential staining revealed that SS for 5 days decreased the proportion of live fibroblasts in domestic cat and kodkod (p < .05). Regarding gene expression analysis, in domestic cat fibroblasts, no differences were found in the BAX/BCL2 ratio in SS and CI (both at 1, 3 and 5 days) compared to GC. In kodkod fibroblasts, BAX/BCL2 ratio was increased in CI at 3 and 5 days compared to SS at 3 and 5 days (p < .05). In conclusion, in kodkod fibroblasts SS for 5 days and CI after 3 days might have a negative impact on cellular viability. According to these results, we suggest SS for 3 days for cell cycle synchronization in kodkod fibroblasts.  相似文献   

12.
To obtain data concerning the survival of embryos and calves derived from somatic cell nuclear transfer (SCNT) in Japan, a nationwide survey was carried out in April, 2009. As a result, data concerning 3264 embryo transfers (ETs) with SCNT embryos which produced 301 calves were accumulated and their survival was analyzed. The present survey revealed that survival rates of transferred bovine embryos and produced calves derived from SCNT had not improved over a decade (1998–2007). A remarkable feature of the pregnancies with SCNT embryos was a high incidence of spontaneous abortions. When the decade was divided by the occurrence of bovine spongiform encephalopathy (BSE) in 2001, significant decreases in the ‘after BSE’ period (2002–2007) were observed in the percentages of calves born (P < 0.01), calves living at birth (P < 0.05), calves living for 24 h (P < 0.05) and 6 months (P < 0.01). Abortions that occurred during 61–99 days after ETs were significantly increased (P < 0.01) in the ‘after BSE’ period. Certain kinds of regeneration that occurred in oocytes during the 15–20 h of storage of bovine ovaries at 10–15°C as a part of BSE inspection might have had some negative effects on SCNT embryos when these oocytes were used as recipients of SCNT.  相似文献   

13.
14.
15.
Granulosa cells play important roles in the regulation of ovarian functions. Phospholipase C is crucial in several signalling pathways and could participate in the molecular mechanisms of cell proliferation, differentiation and ageing. The objective of this study was to identify the effects of phospholipase C on the steroidogenesis of oestradiol and progesterone in porcine granulosa cells cultured in vitro. Inhibitor U73122 or activator m‐3M3FBS of phospholipase C was added to the in vitro medium of porcine granulosa cells, respectively. The secretion of oestradiol decreased after 2 hr, 8 hr, 12 hr, 24 hr and 48 hr of treatment with 500 nM U73122 (p < .05) and decreased after 2 hr of treatment in the 500 nM m‐3M3FBS addition group (p < .05). The secretion of progesterone increased after 4 hr of treatment with 500 nM U73122 (p < .05) and increased after 2 hr and 8 hr of treatment in the 500 nM m‐3M3FBS addition group (p < .05). The ratio of oestradiol to progesterone decreased at each time point, except 8 hr after the addition of 500 nM U73122 (p < .05). The ratio of oestradiol to progesterone decreased after 2 hr (p < .05) of treatment with 500 nM m‐3M3FBS. In genes that regulate the synthesis of oestradiol or progesterone, the mRNA expression of CYP11A1 was markedly increased (p < .05), and the mRNA expression of other genes did not change significantly in the U73122 treatment group, while the addition of m‐3M3FBS did not change those genes significantly despite the contrary trend. Our results demonstrated that phospholipase C can be a potential target to stimulate the secretion of oestradiol and suppress progesterone secretion in porcine granulosa cells cultured in vitro, which shed light on a novel biological function of phospholipase C in porcine granulosa cells.  相似文献   

16.
17.
Chlorogenic acid (CGA) is known to protect oocytes from oxidative stress. Here we investigated the effects of CGA on porcine oocyte maturation under heat stress and subsequent embryonic development after parthenogenetic activation. For in vitro maturation (IVM) at 41.0°C (hyperthermic condition), supplementation of the maturation medium with 50 μM CGA significantly improved the percentage of matured oocytes and reduced the rate of apoptosis relative to oocytes matured without CGA (p < .05). CGA treatment of oocytes during IVM under hyperthermia tended to increase (p < .1) percentage of blastocyst formation after parthenogenesis and significantly increased (p < .05) the total cell number per blastocyst relative to oocytes matured without CGA. For IVM at 38.5°C (isothermic condition), CGA significantly improved the rate of blastocyst development compared with oocytes matured without CGA (p < .05), but did not affect oocyte maturation, apoptosis rate or the number of cells per embryo. Omission of all antioxidants from the IVM medium significantly reduced the rate of oocyte maturation, but the rate was restored upon addition of CGA. These results demonstrate that CGA is a potent antioxidant that protects porcine oocytes from the negative effects of heat stress, thus reducing the frequency of apoptosis and improving the quality of embryos.  相似文献   

18.
Aberration in DNA methylation is believed to be one of the major causes of abnormal gene expression and inefficiency of somatic cell nuclear transfer (SCNT). RG108, a non‐nucleoside DNA methyltransferase (DNMT) inhibitor, has been reported to facilitate somatic nuclear reprogramming and improved blastocyst formation. The aim of this study was to investigate interaction effect of RG108 treatment time (24–72 hr) and concentrations (0.05–50 µM) on donor cells, and further to optimize the treatment for porcine SCNT. Our results showed that RG108 treatment resulted in time‐dependent decrease of genome‐wide DNA methylation on foetal fibroblasts, which only happened after 72‐hr treatment in our experiments, and no interaction effect between treatment time and concentration. Remarkable decrease of methylation in imprinted gene H19 and increased apoptosis was observed in 5 and 50 µM RG108‐treated cells. Furthermore, the blastocyst rates of SCNT embryos were increased as the fibroblasts treated with RG108 at 5 and 50 µM, and additional treatment during cultivation of SCNT embryos would not provide any advantage for blastocyst formation. In conclusion, the RG108 treatment of 72 hr and 5 μM would be optimized time and concentration for porcine foetal fibroblasts to improve the SCNT embryonic development. In addition, combined treatment of RG108 on donor cells and SCNT embryos would not be beneficial for embryonic development.  相似文献   

19.
In this study, we compared the developmental ability of somatic cell nuclear transfer (SCNT) embryos reconstructed with three bovine somatic cells that had been synchronized in G0‐phase (G0‐SCNT group) or early G1‐phase (eG1‐SCNT group). Furthermore, we investigated the production efficiency of cloned offspring for NT embryos derived from these donor cells. The G0‐phase and eG1‐phase cells were synchronized, respectively, using serum starvation and antimitotic reagent treatment combined with shaking of the plate containing the cells (shake‐off method). The fusion rate in the G0‐SCNT groups (64.2 ± 1.8%) was significantly higher than that of eG1‐SCNT groups (39.2 ± 1.9%) (P < 0.05), but the developmental rates to the blastocyst stage of SCNT embryos per fused oocytes were similar for all groups. The overall production efficiency of the clone offspring in eG1‐SCNT groups (12.7%) per recipient cow was higher than that in G0‐SCNT groups (3%) (P < 0.05). The mean birth weight of cloned calves and the average calving score in the G0‐SCNT groups (48.1 ± 3.4 kg and 3.3 ± 0.3, respectively) was significantly higher (P < 0.05) than those of eG1‐SCNT groups (37.2 ± 2.1 kg and 2.3 ± 0.2, respectively). Results of this study indicate that synchronization of donor cells in eG1‐phase using the shake‐off method improved the overall production efficiency of the clone offspring per transferred embryo.  相似文献   

20.
In vitro produced embryos are still sensitive to the freezing process which can be explained, in part, by the high-lipid accumulation that characterizes these embryos. Therefore, we aimed to evaluate the effect of delipidating agents, L-carnitine and the trans-10 cis-12 conjugated linoleic acid (CLA) isomer, on blastocyst development, lipid content, gene expression and cryotolerance when added to embryo culture media. Embryos were cultured in four different media: T1: control (n = 616), synthetic oviduct fluid (SOF) media with 5% foetal bovine serum (FBS); T2: L-carnitine (n = 648), SOF medium with 5% FBS and 0.6 mg/ml of L-carnitine; T3: CLA (n = 627), SOF medium with 5% FBS and 100 μM trans-10 cis-12 CLA; and T4: L-carnitine + CLA: (n = 597), SOF medium with 5% FBS plus 0.6 mg/ml L-carnitine and 100 μM trans-10 cis-12 CLA. Supplementation of culture medium with either or both delipidating agents reduced (p < .05) blastocyst rate on D7 (T1 = 49 ± 3.5; T2 = 39 ± 3.0; T3 = 42 ± 3.9 and T4 = 39 ± 3.9), but did not affected gene expression (p > .05). Although embryos cultured in the presence of L-carnitine contained fewer (p < .05) lipid droplets than the control embryos, they showed a lower re-expansion rate 24 hr post-thaw than those (p < .05). In conclusion, although L-carnitine reduced the amount of lipids in cultured embryos, the use of L-carnitine and CLA during in vitro culture was not able to improve the embryo production and the response to cryopreservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号