首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 192 毫秒
1.
Volatile flavor components of stored nonfat dry milk.   总被引:1,自引:0,他引:1  
Nonfat dry milk (NDM) is widely used both as an ingredient in other preparations and for direct consumption. Flavor quality of NDM is a critical parameter because it can directly impact final product quality. Flavors can be formed in NDM during subsequent storage. Identification of compounds responsible for storage-induced flavors is necessary to correlate sensory quality with potential sources of the flavors. Six NDM samples were selected for volatile flavor analysis based on sensory analysis and storage time. Volatile components were extracted by direct solvent extraction/high vacuum distillation. Volatile extracts were separated into neutral/basic and acidic fractions and analyzed by gas chromatography-olfactometry (GCO) and aroma extract dilution analysis (AEDA). A variety of aldehydes, ketones, and free fatty acids were responsible for generation of flavors in stored NDM. The following compounds exhibited high aroma impact by AEDA: 3-(methylthio)propanal (boiled potato); o-aminoacetophenone (corn tortilla); 2,5-dimethyl-4-hydroxy-3(2H)-furanone and 2-methyl-3-hydroxy-4H-pyran-4-one (burnt sugar); butanoic acid (cheesy); pentanoic acid (sweaty); acetic and hexanoic acids (sour/vinegar); octanoic, decanoic, and dodecanoic acids (waxy); p-cresol (cowy/barny); 3-methylindole (fecal); dimethyl trisulfide (cabbage); (E,E)-2,4-decadienal (fried/fatty); furfuryl alcohol (rubber/vitamin); phenylacetic acid (rose-like); and 1-octen-3-one (mushroom).  相似文献   

2.
Two kinds of pan-fired green teas (Japanese Kamairi-cha and Chinese Longing tea) were compared with the common Japanese green tea (Sen-cha). Application of the aroma extract dilution analysis (AEDA) using the volatile fraction of the Sen-cha, Kamairi-cha and Longing tea infusions revealed 32, 51, and 52 odor-active peaks with flavor dilution factors between 16 and 1024, respectively. (Z)-1,5-Octadien-3-one (metallic, geranium-like), 4-mercapto-4-methyl-2-pentanone (meaty, black currant-like), methional (potato-like), (E,Z)-2,6-nonadienal (cucumber-like), and 3-methylnonane-2,4-dione (green, fruity, hay-like) showed high flavor dilution factors in all varieties. In addition, 2-acetyl-1-pyrroline (popcorn-like), 2-ethyl-3,5-dimethylpyrazine (nutty), 2,3-diethyl-5-methylpyrazine (nutty), and 2-acetyl-2-thiazoline (popcorn-like) belonged to the most potent odorants only in the pan-fired green teas. Among these odorants, 2-acetyl-1-pyrroline and 2-acetyl-2-thiazoline were identified for the first time among the tea volatiles.  相似文献   

3.
The volatiles present in fresh, pink-fleshed Colombian guavas ( Psidium guajava, L.), variety regional rojo, were carefully isolated by solvent extraction followed by solvent-assisted flavor evaporation, and the aroma-active areas in the gas chromatogram were screened by application of the aroma extract dilution analysis. The results of the identification experiments in combination with the FD factors revealed 4-methoxy-2,5-dimethyl-3(2 H)-furanone, 4-hydroxy-2,5-dimethyl-3(2 H)-furanone, 3-sulfanylhexyl acetate, and 3-sulfanyl-1-hexanol followed by 3-hydroxy-4,5-dimethyl-2(5 H)-furanone, ( Z)-3-hexenal, trans-4,5-epoxy-( E)-2-decenal, cinnamyl alcohol, ethyl butanoate, hexanal, methional, and cinnamyl acetate as important aroma contributors. Enantioselective gas chromatography revealed an enantiomeric distribution close to the racemate in 3-sulfanylhexyl acetate as well as in 3-sulfanyl-1-hexanol. In addition, two fruity smelling diastereomeric methyl 2-hydroxy-3-methylpentanoates were identified as the ( R,S)- and the ( S,S)-isomers, whereas the ( S,R)- and ( R,R)-isomers were absent. Seven odorants were identified for the first time in guavas, among them 3-sulfanylhexyl acetate, 3-sulfanyl-1-hexanol, 3-hydroxy-4,5-dimethyl-2(5 H)-furanone, trans-4,5-epoxy-( E)-2-decenal, and methional were the most odor-active.  相似文献   

4.
Application of an aroma extract dilution analysis on an aroma distillate prepared from organically grown, raw West-African peanuts (Cameroon) revealed 36 odor-active areas in the flavor dilution (FD) factor range of 1 to 2048. The identification experiments, which were all performed by using the respective reference chemicals, revealed 2-isopropyl-3-methoxypyrazine (earthy, pea-like), 2-isobutyl-3-methoxypyrazine (bell pepper-like, earthy), and trans-4,5-epoxy-(E)-2-decenal (metallic) with the highest FD factors among the 36 aroma compounds identified. The two last mentioned odorants and another set of 22 further odorants were identified for the first time in raw peanuts. A comparative aroma extract dilution analysis applied on distillates prepared from either the raw peanuts or ground peanut meal roasted in a pan showed 52 odor-active areas in the FD factor range of 8 to 2048 in the roasted nut material. The identification experiments in combination with the FD factors revealed that among them, 2-acetyl-1-pyrroline and 4-hydroxy-2,5-dimethyl-3-(2H)-furanone showed the most significant contribution to the overall aroma, followed by 1-octen-3-one, 2-isopropyl-3-methoxypyrazine, (E, E)-2,4-decadienal, and trans-4,5-epoxy-(E)-2-decenal. As a further result, 20 aroma compounds were newly identified in roasted peanuts, such as 2-propionyl-1-pyrroline and 2-acetyltetrahydropyridine (both popcorn-like). In particular, 2-acetyl-1-pyrroline and 4-hydroxy-2,5-dimethyl-3(2 H)-furanone showed the most pronounced increase after roasting.  相似文献   

5.
6.
Extrusion cooking processing followed by air-drying has been applied to obtain low-fat potato snacks. Optimal parameters were developed for a dough recipe. Dough contained apart from potato granules 7% of canola oil, 1% of salt, 1% of baking powder, 5% of maltodextrin, and 15% of wheat flour. After the extrusion process, snacks were dried at 85 degrees C for 15 min followed by 130 degrees C for 45 min. The potent odorants of extruded potato snacks were identified using aroma extract dilution analysis and gas chromatography-olfactometry. Among the characteristic compounds, methional with boiled potato flavor, benzenemethanethiol with pepper-seed flavor, 2-acetyl-1-pyrroline with popcorn flavor, benzacetaldehyde with strong flowery flavor, butanal with rancid flavor, and 2-acetylpyrazine with roasty flavor were considered to be the main contributors to the aroma of extruded potato snacks. Several compounds were concluded to be developed during extrusion cooking, such as ethanol, 3-methylbutanal, (Z)-1,5-octadien-3-one with geranium flavor, and unknown ones with the flavor of boiled potato, cumin, candy, or parsley root. Compounds such as methanethiol, 2,3-pentanedione, limonene, 2-acetylpyrazine, 2-ethyl-3,5-dimethylpyrazine, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, 3-hydroxy-4,5-dimethyl-2(5H)-furanone, 2-methyl-3,5-diethylpyrazine, 5-methyl-2,3-diethylpyrazine, and (E)-beta-damascenone were probably developed during air-drying of the potato extrudate.  相似文献   

7.
Four Spanish aged red wines made in different wine-making areas have been extracted, and the extracts and their 1:5, 1:50, and 1:500 dilutions have been analyzed by a gas chromatography-olfactometry (GC-O) approach in which three judges evaluated odor intensity on a four-point scale. Sixty-nine different odor regions were detected in the GC-O profiles of wines, 63 of which could be identified. GC-O data have been processed to calculate averaged flavor dilution factors (FD). Different ANOVA strategies have been further applied on FD and on intensity data to check for significant differences among wines and to assess the effects of dilution and the judge. Data show that FD and the average intensity of the odorants are strongly correlated (r(2) = 0.892). However, the measurement of intensity represents a quantitative advantage in terms of detecting differences. For some odorants, dilution exerts a critical role in the detection of differences. Significant differences among wines have been found in 30 of the 69 odorants detected in the experiment. Most of these differences are introduced by grape compounds such as methyl benzoate and terpenols, by compounds released by the wood, such as furfural, (Z)-whiskey lactone, Furaneol, 4-propylguaiacol, eugenol, 4-ethylphenol, 2,6-dimethoxyphenol, isoeugenol, and ethyl vanillate, by compounds formed by lactic acid bacteria, such as 2,3-butanedione and acetoine, or by compounds formed during the oxidative storage of wines, such as methional, sotolon, o-aminoacetophenone, and phenylacetic acid. The most important differences from a quantitative point of view are due to 2-methyl-3-mercaptofuran, 4-propylguaiacol, 2,6-dimethoxyphenol, and isoeugenol.  相似文献   

8.
Application of aroma extract dilution analysis (AEDA) to the volatiles isolated from a commercial Japanese soy sauce revealed 30 odor-active compounds in the flavor dilution (FD) factor range of 8-4096, among which 2-phenylethanol showed the highest FD factor of 4096, followed by 3-(methylsulfanyl)propanal (methional), the tautomers 4-hydroxy-5-ethyl-2-methyl- and 4-hydroxy-2-ethyl-5-methyl-3(2H)-furanone (4-HEMF), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (4-HDF), and 3-hydroxy-4,5-dimethyl-2(5H)-furanone (sotolone), all showing FD factors of 1024. Thirteen odorants were quantified by stable isotope dilution assays, and their odor activity values (OAVs) were calculated as ratio of their concentrations and odor thresholds in water. Among them, 3-methylbutanal (malty), sotolone (seasoning-like), 4-HEMF (caramel-like), 2-methylbutanal (malty), methional (cooked potato), ethanol (alcoholic), and ethyl 2-methylpropanoate (fruity) showed the highest OAVs (>200). An aqueous model aroma mixture containing 13 odorants, which had been identified with the highest OAVs, in concentrations that occur in the soy sauce showed a good similarity with the overall aroma of the soy sauce itself. Heat treatment of the soy sauce resulted in a clear change of the overall aroma. Quantitation of selected odorants revealed a significant decrease in sotolone and, in particular, increases in 2-acetyl-1-pyrroline, 4-HDMF, and 4-HEMF induced by heating.  相似文献   

9.
Characteristic aroma components of buckwheat honey were studied by combined sensory and instrumental techniques. Relative aroma intensity of individual volatile components was evaluated by aroma extract dilution analysis (AEDA) of solvent extracts and by gas chromatography-olfactometry (GCO) of decreasing headspace samples (GCO-H). Results indicated that 3-methylbutanal, 3-hydroxy-4,5-dimethyl-2(5H)-furanone (sotolon), and (E)-beta-damascenone were the most potent odorants in buckwheat honey, with 3-methylbutanal being primarily responsible for the distinct malty aroma. Other important aroma-active compounds included methylpropanal, 2,3-butanedione, phenylacetaldehyde, 3-methylbutyric acid, maltol, vanillin, methional, coumarin, and p-cresol.  相似文献   

10.
Roasted notes contribute to the flavor of thermally processed foods such as meat and bread. 2-Acetyl-2-thiazoline is one of the key volatile compounds responsible for the roasted and popcorn-like aroma character. We report here on the biogeneration of flavoring preparations with intense roasted notes, which are characterized by a high content of 2-acetyl-2-thiazoline. These flavoring preparations were obtained by fermentation of cysteamine, ethyl-L-lactate, and D-glucose with baker's yeast. The precursor of 2-acetyl-2-thiazoline, 2-(1-hydroxyethyl)-4,5-dihydrothiazole, was prepared under mild conditions by microbial reduction of the carbonyl group of 2-acetyl-2-thiazoline using baker's yeast as biocatalyst. The addition of 2-(1-hydroxyethyl)-4,5-dihydrothiazole as aroma precursor to pizza dough resulted in an increase of the roasted note.  相似文献   

11.
Predominant heat-induced odorants generated in soy milk by ultrahigh-temperature (UHT) processing were evaluated by sensory and instrumental techniques. Soy milks processed by UHT (143 degrees C/14 s, 143 degrees C/59 s, 154 degrees C/29 s) were compared to a control soy milk (90 degrees C/10 min) after 0, 1, and 7 days of storage (4.4 +/- 1 degrees C). Dynamic headspace dilution analysis (DHDA) and solvent-assisted flavor evaporation (SAFE) in conjunction with GC-olfactometry (GCO)/aroma extract dilution techniques and GC-MS were used to identify and quantify major aroma-active compounds. Sensory results revealed that intensities of overall aroma and sulfur and sweet aromatic flavors were affected by the processing conditions. Odorants mainly responsible for the changes in sulfur perception were methional, methanethiol, and dimethyl sulfide. Increases in 2-acetyl-1-pyrroline, 2-acetyl-thiazole, and 2-acetyl-2-thiazoline intensities were associated with roasted aromas. A marginal increase in intensity of sweet aromatic flavor could be explained by increases in 2,3-butanedione, 3-hydroxy-2-butanone, beta-damascenone, and 2- and 3-methylbutanal. Predominant lipid-derived odorants, including (E,E)-2,4-nonadienal, (E,E)-2,4-decadienal, (E,Z)-2,4-decadienal, (E)-2-nonenal, (E)-2-octenal, 1-octen-3-one, 1-octen-3-ol, and (E,Z)-2,6-nonadienal, were affected by processing conditions. Intensities of overall aroma and sulfur notes in soy milk decreased during storage, whereas other sensory attributes did not change. Color changes, evaluated by using a Chroma-meter, indicated all UHT heating conditions used in this study generated a more yellow and saturated color in soy milk in comparison to the control soy milk.  相似文献   

12.
An investigation of the volatile fraction of a freshly prepared sourdough rye bread crumb by means of the aroma extract dilution analysis (AEDA), followed by identification experiments, revealed 22 flavor compounds in the flavor dilution (FD) factor range of 128 to 2048. Quantitations performed by stable isotope dilution assays (SIDA) and a calculation of odor activity values (OAV; ratio of concentration to odor threshold) revealed the following as contributors to the overall crumb flavor: 3-methylbutanal (malty), (E)-2-nonenal (green, fatty), (E,E)-2,4-decadienal (fatty, waxy), hexanal (green), acetic acid (sour, pungent), phenylacetaldehyde (honey-like), methional (boiled potato-like), vanillin (vanilla-like), 2,3-butandione (buttery), 3-hydroxy-4,5-dimethyl-2(5H)-furanone (spicy), and 2- and 3-methylbutanoic acid (sweaty). Using either citrate buffer, starch, or deodorized crumb as model matrixes, the typical malty and sour rye bread crumb flavor was reproduced by adding a mixture of 20 reference odorants in the "natural" concentrations as quantitatively determined in the fresh crumb.  相似文献   

13.
The purpose of this study was to understand why some canned orange juices are not perceived as orange juice. Sensory flavor profile data indicated that the primary odor (orthonasal) attributes were tropical fruit/grapefruit, cooked/caramel, musty, and medicine. By comparison fresh-squeezed juice lacked these odor attributes. GC-O analysis found 43 odor-active components in canned juices. Eight of these aroma volatiles were sulfur based. Four of the 12 most intense aroma peaks were sulfur compounds that included methanethiol, 1-p-menth-1-ene-8-thiol, 2-methyl-3-furanthiol, and dimethyl trisulfide. The other most intense odorants included 7-methyl-3-methylene-1,6-octadiene (myrcene), octanal, 2-methoxyphenol (guaiacol), 2-ethyl-4-hydroxy-5-methyl-3(2H)-furanone (homofuraneol), (E)-non-2-enal, (E,E)-deca-2,4-dienal, 4-hydroxy-3-methoxybenzaldehyde (vanillin), and alpha-sinensal. Odorants probably responsible for the undesirable sensory attributes included grapefruit (1-p-menth-1-ene-8-thiol), cooked [2-ethyl-4-hydroxy-5-methyl-3(2H)-furanone, 4-hydroxy-2,5-dimethyl-3(2H)-furanone (Furaneol), and 3-(methylthio)propanal (methional)], musty [7-methyl-3-methylene-1,6-octadiene and (E)-non-2-enal], and medicine (2-methoxyphenol). The canned juices also lacked several aldehydes and esters normally found in fresh orange juice.  相似文献   

14.
15.
An investigation by aroma extract dilution analysis (AEDA) of the aroma concentrate of soy milk made from a major Japanese soybean cultivar, Fukuyutaka (FK), revealed 20 key aroma compounds having flavor dilution (FD) factors of not less than 64. Among them, 2-isopropyl-3-methoxypyrazine, cis-4,5-epoxy-(E)-2-decenal, trans-4,5-epoxy-(E)-2-decenal, 3-hydroxy-4,5-dimethyl-2(5H)-furanone, and 2'-aminoacetophenone were identified as the key aroma compounds in soy milk for the first time. (E,E)-2,4-Decadienal exhibiting a fatty note and trans-4,5-epoxy-(E)-2-decenal exhibiting a metallic/sweet note were detected as having the highest FD factors of 4096, followed by hexanal (green), (E)-2-nonenal (fatty), and (E,E)-2,4-nonadienal (fatty) having FD factors of 1024. Although all of these compounds might be generated from lipids, various aroma components, which were thought to be generated from amino acids, sugars, and ferulic acid, were detected having FD factors of 64-256. Investigation by comparative AEDA experiments of the soy milk aroma concentrates of two cultivars for soybean curd and soy milk, FK and Vinton81 (VT), and one cultivar for boiled beans, Miyagishirome (MY), revealed that most of the key aroma compounds were common to all of them, but 2-isopropyl-3-methoxypyrazine, exhibiting a pea-like/earthy note, was detected only in FK and VT. In addition, a sensory experiment revealed that the pea-like/earthy notes in FK and VT were significantly stronger than that in MY. These results demonstrated that a pea-like/earthy note contributed by 2-isopropyl-3-methoxypyrazine might be one of the essential characteristics to describe soy milk aromas.  相似文献   

16.
Odor volatiles in three major lychee cultivars (Mauritius, Brewster, and Hak Ip) were examined using gas chromatography-olfactometry, gas chromatography-mass spectrometry, and gas chromatography-pulsed flame photometric detection. Fifty-nine odor-active compounds were observed including 11 peaks, which were associated with sulfur detector responses. Eight sulfur volatiles were identified as follows: hydrogen sulfide, dimethyl sulfide, diethyl disulfide, 2-acetyl-2-thiazoline, 2-methyl thiazole, 2,4-dithiopentane, dimethyl trisulfide, and methional. Mauritius contained 25% and Brewster contained 81% as much total sulfur volatiles as Hak Ip. Cultivars were evaluated using eight odor attributes: floral, honey, green/woody, tropical fruit, peach/apricot, citrus, cabbage, and garlic. Major odor differences in cabbage and garlic attributes correlated with cultivar sulfur volatile composition. The 24 odor volatiles common to all three cultivars were acetaldehyde, ethanol, ethyl-3-methylbutanoate, diethyl disulfide, 2-methyl thiazole, 1-octen-3-one, cis-rose oxide, hexanol, dimethyl trisulfide, alpha-thujone, methional, 2-ethyl hexanol, citronellal, (E)-2-nonenal, linalool, octanol, (E,Z)-2,6-nonadienal, menthol, 2-acetyl-2-thiazoline, (E,E)-2,4-nonadienal, beta-damascenone, 2-phenylethanol, beta-ionone, and 4-vinyl-guaiacol.  相似文献   

17.
Three tasty (BR-139, FA-624, and FA-612) and two less tasty (R-144 and R-175) fresh greenhouse tomato cultivars, which significantly differ in their flavor profiles, were screened for potent odorants using aroma extract dilution analysis (AEDA). On the basis of AEDA results, 19 volatiles were selected for quantification in those 5 cultivars using gas chromatography-mass spectrometry (GC-MS). Compounds such as 1-penten-3-one, ( E, E)- and ( E, Z)-2,4-decadienal, and 4-hydroxy-2,5-dimethyl-3(2 H)-furanone (Furaneol) had higher odor units in the more preferred cultivars, whereas methional, phenylacetaldehyde, 2-phenylethanol, or 2-isobutylthiazole had higher odor units in the less preferred cultivars. Simulation of the odor of the selected tomato cultivars by preparation of aroma models and comparison with the corresponding real samples confirmed that all important fresh tomato odorants were identified, that their concentrations were determined correctly in all five cultivars, and that differences in concentration, especially of the compounds mentioned above, make it possible to distinguish between them and are responsible for the differential preference. To help elucidate formation pathways of key odorants, labeled precursors were added to tomatoes. Biogenesis of cis- and trans-4,5-epoxy-( E)-2-decenals from linoleic acid and methional from methionine was confirmed.  相似文献   

18.
19.
Three forms of Thai fried chili pastes (CP) were prepared, consisting of an unheated CP (UH-CP), a CP heated at 100 degrees C for 25 min (H25-CP, typical product), and a CP excessively heated for 50 min (H50-CP). The potent odorants in the CPs were investigated by two gas chromatography-olfactometry methods: dynamic headspace dilution analysis (DHDA) and aroma extract dilution analysis (AEDA). DHDA revealed that the predominant odorants in heated CPs were mainly sulfur-containing compounds, followed by lipid-derived compounds, Strecker aldehydes, and Maillard reaction products. Dimethyl sulfide, allyl mercaptan, 2- (or 3-) methylbutanal, ally methyl sulfide, 2,3-butanedione, 3,3'-thiobis(1-propene), and methyl propyl disulfide were among the most potent headspace odorants detected by DHDA. By AEDA, 2-vinyl-4 H-1,3-dithiin and diallyl trisulfide had the highest FD factors in H25-CP. On the basis of their high FD factors by both GCO methods, the predominant odorants in H25-CP were 3-vinyl-4 H-1,2-dithiin, allyl methyl disulfide, and allyl methyl trisulfide. Furthermore, dimethyl trisulfide and diallyl disulfide had the highest odor activity values in H25-CP, suggesting that these were also potent odorants in CP. In addition, methional, 3-methylbutanoic acid, 4-hydroxy-2,5-dimethyl-3-(2 H)-furanone, and 3-hydroxy-4,5-dimethyl-2( 5H)-furanone (sotolon) were indicated as potent thermally derived odorants of H25-CP.  相似文献   

20.
Cultivar Marion and Evergreen blackberry aromas were analyzed by aroma extract dilution analysis. Sixty-three aromas were identified (some tentatively) by mass spectrometry and gas chromatography-retention time; 48 were common to both cultivars, and 27 have not been previously reported in blackberry fruit. A comparison of cultivars shows that both have comparable compound types and numbers but with widely differing aroma impacts, as measured by flavor dilution (FD) factors. Ethyl 2-methylbutanoate, ethyl 2-methylpropanoate, hexanal, furanones (2,5-dimethyl-4-hydroxy-3-(2H)-furanone, 2-ethyl-4-hydroxy-5-methyl-3-(2H)-furanone, 4-hydroxy-5-methyl-3-(2H)-furanone, 4,5-dimethyl-3-hydroxy-2-(5H)-furanone, and 5-ethyl-3-hydroxy-4-methyl-2-(5H)-furanone), and sulfur compounds (thiophene, dimethyl sulfide, dimethyl disulfide, dimethyl trisulfide, 2-methylthiophene, and methional) were prominent in Evergreen (FD 512-2048). Except for ethyl 2-methylpropanoate, these same compounds were also prominent in Marion, but the FD factors varied significantly (FD 8-256) from Evergreen. The aroma profile of blackberry is complex, as no single volatile was unanimously described as characteristically blackberry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号