首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The aroma compounds of young and aged Chinese "Yanghe Daqu" liquor samples were extracted by solid phase microextraction (SPME) and analyzed by gas chromatography (GC)-olfactometry dilution analysis. The original liquor samples were diluted with deionized water to give a final alcohol content of 14% (v/v). The samples were stepwise diluted (1:1) with 14% (by volume) ethanol-water solution and then extracted by headspace SPME. The samples were preequilibrated at 50 degrees C for 15 min and extracted with stirring at the same temperature for 30 min prior to injection into GC. The aroma compounds were identified by both GC-MS and GC-olfactometry using DB-Wax and DB-5 columns. The results suggested that esters were the major contributors to Yanghe Daqu liquor aroma. Ethyl hexanoate, ethyl butanoate, and ethyl pentanoate had very high flavor dilution values in both young and aged liquors (FD > 8192). Methyl hexanoate, ethyl heptanoate, ethyl benzoate, and butyl hexanoate could also be very important because of their high flavor dilution values (FD > or = 256). Moreover, two acetals, 1,1-diethoxyethane and 1,1-diethoxy-3-methylbutane, also were shown high flavor dilution values in Yanghe Daqu liquors (FD > or = 256). Other aroma compounds having moderate flavor dilution values included acetaldehyde, 3-methylbutanol, and 2-pentanol (FD > or = 32). Comparing young and aged liquors, the aroma profiles were similar, but the aroma compounds in the aged sample had higher flavor dilution values than in the young ones.  相似文献   

2.
The aroma-active compounds in two apple ciders were identified using gas chromatography-olfactometry (GC-O) and GC-mass spectrometry (MS) techniques. The volatile compounds were extracted using solvent-assisted flavor evaporation (SAFE) and headspace solid-phase microextraction (HS-SPME). On the basis of odor intensity, the most important aroma compounds in the two apple cider samples were 2-phenylethanol, butanoic acid, octanoic acid, 2-methylbutanoic acid, 2-phenylethyl acetate, ethyl 2-methylbutanoate, ethyl butanoate, ethyl hexanoate, 4-ethylguaiacol, eugenol, and 4-vinylphenol. Sulfur-containing compounds, terpene derivatives, and lactones were also detected in ciders. Although most of the aroma compounds were common in both ciders, the aroma intensities were different. Comparison of extraction techniques showed that the SAFE technique had a higher recovery for acids and hydroxy-containing compounds, whereas the HS-SPME technique had a higher recovery for esters and highly volatile compounds.  相似文献   

3.
The aroma compounds present in cooked brown rice of the three varieties Improved Malagkit Sungsong (IMS), Basmati 370 (B 370), and Khaskhani (KK), and of the variety Indica (German supermarket sample), were identified on the basis of aroma extract dilution analyses (AEDA). A total of 41 odor-active compounds were identified, of which eleven are reported for the first time as rice constituents. 2-Amino acetophenone (medicinal, phenolic), which was up to now unknown in rice aroma, exhibited the highest flavor dilution (FD) factor among the 30 to 39 odor-active compounds detected in all four varieties. 2-Acetyl-1-pyrroline, exhibiting an intense popcorn-like aroma-note, was confirmed as a further key aroma constituent in IMS, B 370, and KK, but was not important in Indica. Differences in the FD factors between the varieties were found for the previously unknown rice aroma compound 3-hydroxy-4,5-dimethyl-2(5H)-furanone (Sotolon; seasoning-like), which was higher in B 370 than in IMS and KK. In IMS, a yet unknown, spicy smelling component with a very high FD factor could be detected, which contributed with lower FD factors to the overall aromas of B 370 and KK, and was not present in Indica. The latter variety, which was available on the German market, differed most in its overall aroma from the three Asian brown rices.  相似文献   

4.
5.
Published research has indicated that ethyl 2-methylpropanoate, ethyl 2-methybutanaote, ethyl 3-methylbutanoate, hexanoic acid, butanoic acid, and 3-methylbutanoic acid are responsible for fruity fermented (FF) off-flavor; however, these compounds were identified in samples that were artificially created by curing immature peanuts at a constant high temperature. The objective of this study was to characterize the volatile compounds contributing to naturally occurring FF off-flavor. Volatile compounds of naturally occurring FF and no-FF samples were characterized using solvent-assisted flavor evaporation (SAFE), solid phase microextraction (SPME), gas chromatography-olfactometry (GC-O), and gas chromatography-mass spectrometry (GC-MS). Aroma extract dilution analysis (AEDA) identified 12 potent aroma active compounds, none of which were the previously identified esters, with no consistent differences among the aroma active compounds in no-FF and FF samples. Hexanoic acid alone was identified in the naturally occurring FF sample using the SAFE GC-MS methodology, whereas two of the three previously identified esters were identified in natural and artificially created samples. The same two esters were confirmed by SPME GC-MS in natural and artificially created samples. This study demonstrated the need for caution in the direct application of data from artificially created samples until those compounds are verified in natural samples. However, these results suggest that a laboratory method using SPME-GC techniques could be developed and correlated on an ester concentration versus FF intensity basis to provide an alternative to sensory analysis for detection of FF off-flavor in peanut lots.  相似文献   

6.
Aroma and aroma-active compounds of wild grey mullet ( Mugil cephalus ) were analyzed by gas chromatography-mass spectrometry-olfactometry (GC-MS-O). According to sensory analysis, the aromatic extract obtained by simultaneous distillation and extraction (SDE) was representative of grey mullet odor. A total of 50 aroma compounds were identified and quantified in grey mullet. Aldehydes were qualitatively and quantitatively the most dominant volatiles in grey mullet. Aroma extract dilution analysis (AEDA) was used for the determination of aroma-active compounds of fish sample. A total of 29 aroma-active compounds were detected in aromatic extract of grey mullet, of which 24 were identified. On the basis of the flavor dilution (FD) factor, the most powerful aroma active compounds identified in the extract were (Z)-4-heptenal and nonanal, which were described as the strong cooked fish and green-fruity odor, respectively.  相似文献   

7.
Cultivar Marion and Evergreen blackberry aromas were analyzed by aroma extract dilution analysis. Sixty-three aromas were identified (some tentatively) by mass spectrometry and gas chromatography-retention time; 48 were common to both cultivars, and 27 have not been previously reported in blackberry fruit. A comparison of cultivars shows that both have comparable compound types and numbers but with widely differing aroma impacts, as measured by flavor dilution (FD) factors. Ethyl 2-methylbutanoate, ethyl 2-methylpropanoate, hexanal, furanones (2,5-dimethyl-4-hydroxy-3-(2H)-furanone, 2-ethyl-4-hydroxy-5-methyl-3-(2H)-furanone, 4-hydroxy-5-methyl-3-(2H)-furanone, 4,5-dimethyl-3-hydroxy-2-(5H)-furanone, and 5-ethyl-3-hydroxy-4-methyl-2-(5H)-furanone), and sulfur compounds (thiophene, dimethyl sulfide, dimethyl disulfide, dimethyl trisulfide, 2-methylthiophene, and methional) were prominent in Evergreen (FD 512-2048). Except for ethyl 2-methylpropanoate, these same compounds were also prominent in Marion, but the FD factors varied significantly (FD 8-256) from Evergreen. The aroma profile of blackberry is complex, as no single volatile was unanimously described as characteristically blackberry.  相似文献   

8.
9.
10.
This study was conducted to determine the composition of kumquat (Fortunella japonica Swingle) cold-pressed peel oil and to determine which volatile components are primarily responsible for the aroma of this oil. Eighty-two compounds were identified in the oil by GC and GC-MS. The major compounds were limonene (93.73%), myrcene (1.84%), and ethyl acetate (1.13%). Flavor dilution (FD) factors and relative flavor activities (RFA) of volatile constituents were evaluated by aroma extract dilution analysis with gas chromatography-olfactometry (GC-O). Camphene, terpinen-4-ol, citronellyl formate, and citronellyl acetate showed high FD factors (>/=5) and RFA (>20). Citronellyl formate and citronellyl acetate were regarded as the characteristic odor components of the kumquat peel oil from the results of FD factor, RFA, and GC-sniffing. Citronellyl acetate is considered to be the odor component most similar to kumquat by organoleptic evaluation with GC-O.  相似文献   

11.
The aroma extract of Chickasaw blackberry (Rubus L.) was separated with silica gel normal phase chromatography into six fractions. Gas chromatography-olfactometry (GCO) was performed on each fraction to identify aroma active compounds. Aroma extraction dilution analysis (AEDA) was employed to characterize the aroma profile of Chickasaw blackberries from two growing regions of the United States: Oregon and Arkansas. Comparative AEDA analysis showed that the berries grown in the two regions had similar aroma compositions; however, those odorants had various aroma impacts in each region. The compounds with high flavor dilution factors in Oregon's Chickasaw were ethyl butanoate, linalool, methional, trans,cis-2,6-nonadienal, cis-1,5-octadien-3-one, and 2,5-dimethyl-4-hydroxy-3(2H)-furanone, whereas in the Chickasaw grown in Arkansas, they were ethyl butanoate, linalool, methional, ethyl 2-methylbutanoate, beta-damascenone, and geraniol.  相似文献   

12.
Application of the aroma extract dilution analysis (AEDA) on the volatile fraction carefully isolated from an American Bourbon whisky revealed 45 odor-active areas in the flavor dilution (FD) factor range of 32-4096 among which (E)-beta-damascenone and delta-nonalactone showed the highest FD factors of 4096 and 2048, respectively. With FD factors of 1024, (3S,4S)-cis-whiskylactone, gamma-decalactone, 4-allyl-2-methoxyphenol (eugenol), and 4-hydroxy-3-methoxy-benzaldehyde (vanillin) additionally contributed to the overall vanilla-like, fruity, and smoky aroma note of the spirit. Application of GC-Olfactometry on the headspace above the whisky revealed 23 aroma-active odorants among which 3-methylbutanal, ethanol, and 2-methylbutanal were identified as additional important aroma compounds. Compared to published data on volatile constituents in whisky, besides ranking the whisky odorants on the basis of their odor potency, 13 aroma compounds were newly identified in this study: ethyl (S)-2-methylbutanoate, (E)-2-heptenal, (E,E)-2,4-nonadienal, (E)-2-decenal, (E,E)-2,4-decadienal, 2-isopropyl-3-methoxypyrazine, ethyl phenylacetate, 4-methyl acetophenone, alpha-damascone, 2-phenylethyl propanoate, 3-hydroxy-4,5-dimethyl-2(5H)-furanone, trans-ethyl cinnamate, and (Z)-6-dodeceno-gamma-lactone.  相似文献   

13.
Application of a comparative aroma extraction dilution analysis on unroasted and roasted Criollo cocoa beans revealed 42 aroma compounds in the flavor dilution (FD) factor range of 1-4096 for the unroasted and 4-8192 for the roasted cocoa beans. While the same compounds were present in the unroasted and roasted cocoa beans, respectively, these clearly differed in their intensity. For example, 2- and 3-methylbutanoic acid (rancid) and acetic acid (sour) showed the highest FD factors in the unroasted beans, while 3-methylbutanal (malty), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel-like), and 2- and 3-methylbutanoic acid (sweaty) were detected with the highest FD factors in the roasted seeds. Quantitation of 30 odorants by means of stable isotope dilution assays followed by a calculation of odor activity values (ratio of the concentration/odor threshold) revealed concentrations above the odor threshold for 22 compounds in the unroasted and 27 compounds in the roasted cocoa beans, respectively. In particular, a strong increase in the concentrations of the Strecker aldehydes 3-methylbutanal and phenylacetaldehyde as well as 4-hydroxy-2,5-dimethyl-3(2H)-furanone was measured, suggesting that these odorants should contribute most to the changes in the overall aroma after roasting. Various compounds contributing to the aroma of roasted cocoa beans, such as 3-methylbutanoic acid, ethyl 2-methylbutanoate, and 2-phenylethanol, were already present in unroasted, fermented cocoa beans and were not increased during roasting.  相似文献   

14.
Retention of six aroma compounds has been studied after dehydration of ternary mixtures of aroma water and beta-cyclodextrin. A maximal retention of a mole of aroma per mole of beta-cyclodextrin has been observed for five of the aroma compounds, whereas retention of benzyl alcohol can be twice as high. Retention of a mixture of aroma compounds has also been studied. It has been noted that when volatile compounds compete for the same binding sites on beta-cyclodextrin, ethyl hexanoate, 2-methylbutyric acid, and benzyl alcohol are, respectively, better retained than ethyl propionate, hexanoic acid, and hexanol. Preferential retention observed with esters can be simply explained by their difference of physicochemical properties, but for the acids and alcohols a study at the molecular scale has been necessary. The better retention of 2-methylbutyric acid can be explained by differences in the nature of interaction between the acids and their carrier. At least selectivity of retention noted for the alcohol could be due to a difference in the location of the guest and also a difference in the number of aroma molecules that can be bound per polysaccharide molecule.  相似文献   

15.
An investigation by aroma extract dilution analysis (AEDA) of the aroma concentrate of soy milk made from a major Japanese soybean cultivar, Fukuyutaka (FK), revealed 20 key aroma compounds having flavor dilution (FD) factors of not less than 64. Among them, 2-isopropyl-3-methoxypyrazine, cis-4,5-epoxy-(E)-2-decenal, trans-4,5-epoxy-(E)-2-decenal, 3-hydroxy-4,5-dimethyl-2(5H)-furanone, and 2'-aminoacetophenone were identified as the key aroma compounds in soy milk for the first time. (E,E)-2,4-Decadienal exhibiting a fatty note and trans-4,5-epoxy-(E)-2-decenal exhibiting a metallic/sweet note were detected as having the highest FD factors of 4096, followed by hexanal (green), (E)-2-nonenal (fatty), and (E,E)-2,4-nonadienal (fatty) having FD factors of 1024. Although all of these compounds might be generated from lipids, various aroma components, which were thought to be generated from amino acids, sugars, and ferulic acid, were detected having FD factors of 64-256. Investigation by comparative AEDA experiments of the soy milk aroma concentrates of two cultivars for soybean curd and soy milk, FK and Vinton81 (VT), and one cultivar for boiled beans, Miyagishirome (MY), revealed that most of the key aroma compounds were common to all of them, but 2-isopropyl-3-methoxypyrazine, exhibiting a pea-like/earthy note, was detected only in FK and VT. In addition, a sensory experiment revealed that the pea-like/earthy notes in FK and VT were significantly stronger than that in MY. These results demonstrated that a pea-like/earthy note contributed by 2-isopropyl-3-methoxypyrazine might be one of the essential characteristics to describe soy milk aromas.  相似文献   

16.
Comparisons were made between the aroma volatiles of the yellow-fleshed kiwifruit, "Hort16A", at two different stages of eating ripeness: firm and soft. The firm fruit contained a small number of aroma compounds that the soft fruit did not contain. In general, however, the largest difference between the two firmness categories was in the levels of esters, with the soft fruit containing higher concentrations and a larger number of esters than the firm fruit. In vitro analysis directly after maceration using atmospheric pressure chemical ionization mass spectrometry (APCI-MS) showed the relative importance of the most intense aromas between fruit at the two different firmness stages and was used to compare the release rates of aromas. A comparison of the aroma concentrations from gas chromatography mass spectrometry (GC-MS) and APCI-MS headspace analyses showed that the APCI-MS headspace showed less bias toward enzymatically generated lipid degradation compounds. A GC-sniffing study showed that many of the most intense compounds, acetaldehyde, hexanal, ethyl butanoate, and (E)-2-hexenal but not ethanol, showed odor activity in macerated fruit. In addition, dimethyl sulfide (DMS), a volatile present at very low levels in the fruit, also appeared to be an important contributor to the odor. In vivo analyses also showed much higher levels of aroma compounds in the soft fruit compared to the firm fruit, with evidence of persistence of some compounds, including DMS. There were a number of similarities between the breath profiles of the two panelists, which confirmed the importance of DMS in "Hort16A" aroma.  相似文献   

17.
An XAD-4 extract from a 5-year-old wine from Rioja (Spain) was analyzed by aroma extract dilution analysis. Most of the odorants were quantified by GC-MS. A second extract was fractionated in an HPLC system with a C-18 semipreparative column. Fifty fractions were recovered, their alcoholic degree and pH were further adjusted to those of the wine, and those fractions that showed strong odor characteristics were further re-extracted and analyzed by GC-O and GC-MS. Reconstitution experiments were carried out to confirm the role of the odorants detected in the fractions. Fifty-eight odorants were found in the Rioja wine, 52 of which could be identified. Methyl benzoate was found to be a wine aroma constituent for the first time. The most important odorants are 4-ethylguaiacol, (E)-whiskey lactone, 4-ethylphenol, beta-damascenone, fusel alcohols, isovaleric and hexanoic acids, eugenol, fatty acid ethyl esters, and ethyl esters of isoacids, Furaneol, phenylacetic acid, and (E)-2-hexenal. Comparison among the three techniques shows good agreement and demonstrates that they are complementary.  相似文献   

18.
Application of an aroma extract dilution analysis on an aroma distillate prepared from organically grown, raw West-African peanuts (Cameroon) revealed 36 odor-active areas in the flavor dilution (FD) factor range of 1 to 2048. The identification experiments, which were all performed by using the respective reference chemicals, revealed 2-isopropyl-3-methoxypyrazine (earthy, pea-like), 2-isobutyl-3-methoxypyrazine (bell pepper-like, earthy), and trans-4,5-epoxy-(E)-2-decenal (metallic) with the highest FD factors among the 36 aroma compounds identified. The two last mentioned odorants and another set of 22 further odorants were identified for the first time in raw peanuts. A comparative aroma extract dilution analysis applied on distillates prepared from either the raw peanuts or ground peanut meal roasted in a pan showed 52 odor-active areas in the FD factor range of 8 to 2048 in the roasted nut material. The identification experiments in combination with the FD factors revealed that among them, 2-acetyl-1-pyrroline and 4-hydroxy-2,5-dimethyl-3-(2H)-furanone showed the most significant contribution to the overall aroma, followed by 1-octen-3-one, 2-isopropyl-3-methoxypyrazine, (E, E)-2,4-decadienal, and trans-4,5-epoxy-(E)-2-decenal. As a further result, 20 aroma compounds were newly identified in roasted peanuts, such as 2-propionyl-1-pyrroline and 2-acetyltetrahydropyridine (both popcorn-like). In particular, 2-acetyl-1-pyrroline and 4-hydroxy-2,5-dimethyl-3(2 H)-furanone showed the most pronounced increase after roasting.  相似文献   

19.
By application of the aroma extract dilution analysis on the volatile fraction isolated from a black tea infusion (Darjeeling Gold Selection), vanillin (vanilla-like), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel), 2-phenylethanol (flowery), and (E,E,Z)-2,4,6-nonatrienal (oat-flake-like) were identified with the highest flavor dilution (FD) factors among the 24 odor-active compounds detected in the FD factor range of 4-128. Quantitative measurements performed by means of stable isotope dilution assays and a calculation of odor activity values (OAVs; ratio of concentration to odor threshold in water) revealed, in particular, the previously unknown tea constituent (E,E,Z)-2,4,6-nonatrienal as a key odorant in the infusion and confirmed the important role of linalool and geraniol for the tea aroma. An aroma recombinate performed by the 18 odorants for which OAVs > 1 were determined in their "natural" concentrations matched the overall aroma of the tea beverage. In the black tea leaves, a total of 42 odorants were identified, most of which were identical with those in the beverage prepared thereof. However, quantitative measurements indicated that, in particular, geraniol, but also eight further odorants were significantly increased in the infusion as compared to their concentration in the leaves.  相似文献   

20.
Earthy odor is one of the most frequent and serious causes for the aroma deterioration in Chinese liquor, which causes a dirty and dusty impression. The odor in Chinese liquor is similar to that of rice husk, one kind of auxiliary material widely used as a filler in the distillation process. So it is experientially hypothesized that such odor may derive from rice husk. In this paper, the gas chromatography-olfactometry (GC-O) technique and gas chromatography-mass spectrometry (GC-MS) were used to discover and identify the characteristic odoriferous zone of Chinese liquor marked by earthy odor. Geosmin was found to be responsible for this odor. The levels of the compound in ten bottled liquors and thirty liquors aging for different years belonging to four different aroma types were determined by the optimized headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) method. Quantitative analysis of bottled liquor revealed the presence of geosmin in all aroma type liquors with concentrations ranging from 1.10 μg/L to 9.90 μg/L, except for strong-aroma type liquor. Meanwhile in the aged liquors belonging to the same aroma type, geosmin was detected with significant concentrations and high odor activity values (OAVs) during different years of aging. However, geosmin was not detected in steamed rice husk nor in nonsteamed rice husk, which suggests that rice husk is not the origin of earthy odor in Chinese liquor, and there may be another origin of it during the brewing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号