首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nursing enhances the negative effect of estrogen on LH release in the cow   总被引:1,自引:0,他引:1  
Twenty-three crossbred beef cows between 4 and 5 yr of age were assigned at random to one of six treatments: (1) ovariectomized 4 d postpartum (OVX) with early weaning of calves 21 d postpartum (OVX-EW; n = 4), (2) OVX-EW and 17 beta-estradiol implants (OVX-E2-EW; n = 4), (3) OVX and normal nursing by calves throughout the experiment (OVX-NN; n = 3), (4) OVX-NN and 17 beta-estradiol implants (OVX-E2-NN; n = 4), (5) intact cows and early weaning of calves 21 d postpartum (EW), (6) intact cows and normal nursed (NN). Blood was collected at 15-min intervals over a 4-h period once weekly during the 12-wk postpartum period in the OVX cows. Early weaned intact cows exhibited estrus 23 d sooner (P less than .05) than normally nursed cows. A hormone level for each cow at each week was determined from the mean of the 17 samples collected over the 4 h period each week. There were no significant changes due to E2 treatment, for concentrations of LH, FSH or number of pulses during wk 1 through 3. However, during wk 4 through 12 the linear and quadratic contrasts of wk X estrogen X nursing were significant for serum LH, indicating there was no difference between the treatments for EW and NN without E2 but there was a large difference in the presence of E2. During nursing E2 suppressed serum LH below that of nonestrogen-treated cows while after weaning E2 stimulated LH release above that of nonestrogen-treated cows.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The objective of the research was to determine the relationship between circulating 17β-estradiol (E2) and secretion of luteinizing hormone (LH) in cows. A second objective was to determine if response to E2 was influenced by interval between ovariectomy and the start of E2 treatment. Thirty-one nulliparous cows 3 yr of age were randomly assigned to a 2 × 4 factorial arrangement of treatments. Sixteen cows were ovariectomized at 18 mo of age (long term), and the other 15 cows were ovariectomized at 36 mo of age (short term). At the time of ovariectomy of cows in the short term group, 11 cows in the short term group and 12 cows in the long term group were implanted subcutaneously with 1, 2 or 4 polydimethylsiloxane capsules containing E2. The other eight cows served as non-implanted controls (n=4-short term, n=4-long term). All cows were fitted with jugular vein catheters on day 29 of treatment, and on day 30 blood samples were collected at 12-min intervals for 6 hr. At the end of 6 hr, luteinizing hormone-releasing hormone (LHRH) was administered and blood sampling continued at 12-min intervals for an additional hour. Serum was analyzed for LH and E2. Variables of LH secretion analyzed were mean concentration, frequency of pulses, amplitude of pulses and maximum concentration after LHRH. There were no significant interactions for any of the variables of LH among cows ovariectomized for the long and short term. There was a significant linear increase in mean concentration of LH with increased circulating concentration of E2. Frequency of LH pulses was not affected by circulating concentration of E2. As circulating concentration of E2 increased, amplitude of LH pulses increased and response to LHRH increased - resulting in an increase in mean LH. Interval from time of ovariectomy to the start of E2 treatment only had a minor influence on mean concentration of LH and profile of LH concentrations in circulation.  相似文献   

3.
The effect of suckling on depletion of hypothalamic LHRH from the median eminence (ME) following ovariectomy (OVX) was determined in cattle. Multiparous, postpartum Holstein cows were assigned randomly to three groups: intact, nonsuckled (INT, n = 4); ovariectomized (3 to 5 d after parturition), nonsuckled (OVX, n = 4); and ovariectomized (3 to 5 d after parturition) and suckled by three calves (OVX-S, n = 5). Blood samples were collected at three periods (1 to 7 d before parturition and 3 to 5 d and 31 to 37 d after parturition) to determine plasma LH concentration. At 31 to 37 d after parturition, all cows were slaughtered and each ME was collected and mid-sagitally sectioned. The left half of each ME was used to determine content and concentration of LHRH. Concentrations of LH and LHRH were determined by RIA. Plasma LH concentration was similar among the three groups at 1 to 7 d before parturition and 3 to 5 d after parturition; however, at 31 to 37 d after parturition, OVX cows had a greater (P less than .05) concentration of LH (2.25 +/- .64 ng/ml) than either INT (.47 +/- .10 ng/ml) or OVX-S (.92 +/- .14 ng/ml) cows. Content of LHRH in the ME of INT (80.12 +/- 15.0 ng) and OVX-S 109.8 +/- 16.4 ng) cows was similar but was greater (P less than .05) than that in OVX cows (48.95 +/- 5.9 ng).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The amount of messenger RNA (mRNA) for luteinizing hormone beta-subunit (LH beta), follicle-stimulating hormone beta-subunit (FSH beta) and alpha-subunit was measured during estradiol-17 beta (E) positive feedback in ovariectomized (OVX) ewes. During the anestrous season, OVX ewes were given an i.m. injection of E (25 micrograms: n = 5) or oil (control; n = 4) and hourly blood samples were collected for 16 hr. After blood collection, ewes were killed and anterior pituitary glands were removed for analysis of hormone and mRNA content. Preovulatory-like increases in serum concentrations of LH and FSH were measured in E-treated OVX ewes. In two E-treated OVX ewes the serum concentrations of LH and FSH were still increasing, whereas in the remaining three E-treated OVX ewes, serum concentrations of LH were on the decreasing portion of the E-induced preovulatory-like surge. Pituitary content of LH was lower (P less than .10) in E-treated OVX ewes when serum concentrations of LH were decreasing than that measured in control ewes or E-treated OVX ewes in which serum concentrations were still increasing. Pituitary content of FSH and prolactin were similar (P greater than .05) among all groups. The amount of mRNA for LH beta-subunit was similar (P greater than .05) in ewes in which serum concentrations of LH were increasing and in control ewes, but was lower (P less than .05) in ewes with decreasing levels of LH. The amount of mRNA for FSH beta-subunit was lower (P less than .05) in all E-treated OVX ewes (independent of whether serum concentrations of FSH were increasing or decreasing) than that measured in control ewes. There was no difference (P greater than .05) in the amount of mRNA for alpha-subunit among any groups. Thus, amounts of mRNA for the beta-subunits of gonadotropins are reduced, while amounts of mRNA for alpha-subunit are unchanged during estradiol positive feedback in OVX ewes.  相似文献   

5.
Nutritionally induced anovulatory cows (n = 28) were used to determine the effect of steroids on regulation of synthesis and secretion of gonadotropins. Anovulatory cows were ovariectomized and received intravaginal inserts containing estradiol (E2), progesterone (P4), E2 and P4 (E2P4), or a sham intravaginal insert (C) for 7 d. Concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were quantified in serum and E2 and P4 were quantified in plasma. Cows were exsanguinated within 1 to 2 h after removal of intravaginal inserts and pituitary glands were collected and stored at -80 degrees C until messenger ribonucleic acid (mRNA) for gonadotropin-releasing hormone receptor (GnRH-R) and gonadotropin subunits, pituitary content of GnRH-R, and LH and FSH were quantified. Pituitary glands from five proestrous cows were harvested to compare gonadotropin characteristics between ovariectomized, anovulatory cows and intact cows. Plasma concentrations of E2 were greater (P < 0.05) in E2-treated cows than in sham-treated cows. Concentrations of P4 were greater (P < 0.05) in cows treated with P4 than in sham-treated cows. Mean serum concentrations of LH and FSH were not significantly influenced by steroid treatments. However, frequency of LH pulses of ovariectomized, nutritionally induced anovulatory cows was increased (P < 0.05) by treatment with E2 and amplitude of LH pulses was greater (P < 0.05) in cows treated with E2 or P4 than in cows treated with E2P4 or sham-treated. Quantity of mRNA for LHbeta in the pituitary gland was greater when cows were treated with P4. Concentrations of LH in the pituitary gland were not affected by steroid treatments; however, pituitary concentrations of FSH were less (P < 0.1) in E2 cows than in sham-treated cows. The number of GnRH-R was increased (P < 0.05) in cows treated with E2, but P4 treatment did not influence the number of GnRH-R. Abundance of mRNA for GnRH-R, common alpha-subunit, and FSHbeta were not affected by treatments. Pituitary concentrations of LH were greater (P < 0.05) and concentrations of FSH were less (P < 0.05) in proestrous cows than in ovariectomized, anovulatory cows treated with or without steroids. Abundance of mRNA for GnRH-R, common alpha-subunit, LHbeta and FSHbeta were similar for proestrous and anovulatory cows. We conclude that treatment of nutritionally induced anovulatory cows with progesterone and estradiol may cause pulsatile secretion of LH.  相似文献   

6.
An experiment was conducted to test the hypothesis that 17 beta-estradiol (E2) would not suppress secretion of luteinizing hormone (LH) in heifers fed a diet limited in energy during the period before the onset of nutritionally induced anestrus. Sixteen of 20 heifers that had been exhibiting normal estrous cycles (20 mo of age, 409 +/- 6 kg body weight) were ovariectomized, and half of them were assigned at random to receive an E2 implant. The ovariectomized heifers were assigned at random to receive diets that contained low (L; 5.8 Mcal X animal-1 X d-1, n = 8) or high levels of energy (H; 20.0 Mcal X animal-1 X d-1, n = 8) for 100 d. The other four heifers remained intact and were fed the L-diet. The intact heifers were utilized to determine the status of reproductive function in animals fed the L-diet. Heifers lost body weight rapidly after initiation of feeding the L-diet. Heifers fed the L-diet then stabilized at a lighter weight until the latter part of the experiment. One of the four intact heifers fed the L-diet became anestrus near the end of the study. Mean concentrations of LH in blood serum increased linearly (P less than .05) in ovariectomized heifers fed the L- and H-diet. Mean concentration of LH in heifers fed the H-diet that were implanted with E2 was similar to ovariectomized heifers fed the H-diet that received no E2. Mean LH in serum of ovariectomized heifers implanted with E2 fed the L-diet was suppressed and remained low throughout the study. Frequency of pulses of LH in ovariectomized heifers fed the L-diet was less (P less than .01) than that in ovariectomized heifers fed the H-diet. Estradiol decreased the number of pulses of LH in heifers fed the L-diet. We conclude that dietary energy restriction in beef heifers has a direct action on the hypothalamo-pituitary axis to lower the number of pulses of LH in the absence of ovarian steroids. However, ovarian E2 appears to suppress further secretion of LH in heifers fed limited levels of dietary energy before the onset of nutritional anestrus occurs, therefore, our working hypothesis is rejected.  相似文献   

7.
Prepubertal beef heifers at 60 and 200 d of age, born in the fall or spring, were assigned randomly to one of three treatment groups: (1) intact = 1; (2) bilateral ovariectomy (OVX); or (3) OVX plus estradiol-17 beta(E2) administered in silastic implants (OVX + E2). Luteinizing hormone (LH) was measured in serum samples collected at 20-min intervals for 4 h from heifers on -1, +7, +21, +35 and +49 d after OVX. Luteinizing hormone concentrations increased in the serum by 7 d after OVX in heifers at both 60 and 200 d of age (P less than .001; time X treatment). Prior to OVX, the LH patterns were characterized by low levels and infrequent episodic pulses. By 49 d after OVX, the mean LH concentrations increased and the pattern changed to one of rhythmic LH pulses with a periodicity of 1 h (P less than .001; time X treatment). Estradiol-treated OVX heifers did not exhibit a postovariectomy rise in serum LH concentrations. Serum E2 concentration 49 d after OVX in OVX heifers was threefold greater than in 1 or OVX heifers, thus demonstrating that E2 exerted negative feedback on pituitary LH secretion in prepubertal heifers. There was no measurable difference in serum E2 concentrations between I and OVX heifers; however, the contrast in the concentration and pattern of serum LH between the two groups was dramatic and suggested gonadal factors in addition to E2 are involved in controlling LH secretion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Hypothalamic neurons that control the luteinizing hormone (LH) and growth hormone (GH) axes are localized in regions that also express neuropeptide Y (NPY). Increased hypothalamic expression of NPY due to diet restriction has been associated with suppressed secretion of LH and enhanced secretion of GH in numerous species. However, these physiological relationships have not been described in cattle. Thus, two studies were conducted to characterize these relationships using ovariectomized (Experiment 1) or ovariectomized estrogen-implanted (Experiment 2) cows. In Experiment 1, four well-nourished, ovariectomized cows received third cerebroventricular (TCV) injections of 50 and 500 micrograms of NPY in a split-plot design. Venous blood was collected at 10-min intervals from -4 hr (pre-injection control period) to +4 hr (postinjection treatment period) relative to TCV injection. NPY suppressed (P < or = 0.04) tonic secretion of LH irrespective of dose and tended to stimulate (P < or = 0.10) an increase in tonic secretion of GH. In Experiment 2, six ovariectomized cows that were well nourished and implanted with estradiol received TCV injections of 0, 50, or 500 micrograms of NPY in a replicated 3 x 3 Latin Square. Both doses of NPY suppressed (P < 0.06) mean concentration of LH relative to the 0-microgram dose. The 50-microgram dose of NPY tended (P < 0.10) to increase the amplitude of GH pulses. In conclusion, TCV injection of NPY suppressed pituitary secretion of LH and simultaneously tended to increase pituitary secretion of GH.  相似文献   

9.
The secretion of luteinizing hormone-releasing hormone (LHRH) and its temporal association with pulses of luteinizing hormone (LH) was examined in ovariectomized prepuberal gilts. Push-pull cannulae (PPC) were implanted within the anterior pituitary gland and LHRH was quantified from 10 min (200 microliters) perfusate samples. Serum LH concentrations were determined from jugular vein blood obtained at the midpoint of perfusate collection. Initial studies without collection of blood samples, indicated that LHRH secretion in the ovariectomized gilt was pulsatile with pulses comprised of one to three samples. However, most pulses were probably of rapid onset and short duration, since they comprised only one sample. Greater LHRH pulse amplitudes were associated with PPC locations within medial regions of the anterior pituitary close to the median eminence. In studies which involved blood collection, LH secretion was not affected by push-pull perfusion of the anterior pituitary gland in most gilts, however, adaptation of pigs to the sampling procedures was essential for prolonged sampling. There was a close temporal relationship between perfusate LHRH pulses and serum LH pulses with LHRH pulses occurring coincident or one sample preceding serum LH pulses. There were occasional LHRH pulses without LH pulses and LH pulses without detectable LHRH pulses. These results provide direct evidence that pulsatile LHRH secretion is associated with pulsatile LH secretion in ovariectomized gilts. In addition, PPC perfusion of the anterior pituitary is a viable procedure for assessing hypothalamic hypophyseal neurohormone relationships.  相似文献   

10.
The present study examined the effect of acute lipoprivation on pulsatile luteinizing hormone (LH) secretion in both normal-fat diet, ad libitum-fed and fasted female rats. To produce an acute lipoprivic condition, mercaptoacetate (MA), an inhibitor of fatty acid oxidation, was administered intraperitoneally to ad libitum-fed or 24-h fasted ovariectomized (OVX) rats with or without an estradiol (E2) implant, that produces a negative feedback effect on LH pulses. The steroid treatment was performed to determine the effect of estrogen on lipoprivic changes in LH release, because estrogen enhances fasting- or glucoprivation-induced suppression of LH pulses. Pulsatile LH secretion was suppressed by MA administration in a dose-dependent manner in the ad libitum-fed OVX and OVX+E2 rats. LH pulses were more severely suppressed in the 24-h-fasted OVX and OVX+E2 rats compared to the ad libitum-fed rats. Estrogen slightly enhanced lipoprivic suppression but the effect was not significant. In the present study, increased plasma glucose and free-fatty acid concentrations may indicate a blockade of fatty acid metabolism by the MA treatment, but food intake was not affected by any of the MA doses. Acute vagotomy did not block lipoprivic suppression of LH pulses. Thus, the present study indicates that lipid metabolism is important for maintenance of normal reproductive function even in rats fed a normal-fat diet and lipoprivation may be more critical in fasted animals that probably rely more heavily on fatty acid oxidation to maintain appropriate metabolic fuel levels. In addition, failure of blockade of lipoprivic LH inhibition by vagotomy suggests that lipoprivic information resulting in LH suppression is not transmitted to the brain via the vagus nerve.  相似文献   

11.
Cows with ovarian follicular cysts were treated with progesterone to determine whether a reduction in LH concentrations and initiation of ovulatory follicular waves would occur. Cysts were diagnosed using transrectal ultrasonography when single follicular structures > 20 mm or multiple structures > 15 mm in diameter were present for 7 d in the presence of low progesterone concentrations. Three groups were studied: 1) cows with normal estrous cycles (CYC, n = 8); 2) cows with untreated cysts (CYST, n = 7); and 3) cows with cysts treated with two progesterone-releasing intravaginal devices (PRID, n = 8) for 9 d. Ovaries were examined with transrectal ultrasonography, and blood samples were collected daily for analysis of progesterone and FSH. Serial blood samples for determination of mean LH and LH pulse frequency were collected on d 0 (CYST and PRID cows only), 1, 5, 9, and 10. Progesterone concentrations were higher in PRID cows than in CYST cows throughout the PRID treatment period (P < .002). On d 0, LH pulse frequency was similar (P = .10) in PRID (6.6+/-.6 pulses/8 h) and CYST cows (5.1+/-.6 pulses/8 h), but mean LH tended to be higher (P = .054) on d 0 in PRID cows (2.5+/-.2 ng/mL) than in CYST cows (1.9+/-.2 ng/mL). Mean LH and LH pulse frequency decreased (P < .002) by d 1 in PRID cows (1.1+/-.2 ng/mL, 1.8+/-.6 pulses/8 h) compared with CYST cows (2.1+/-.2 ng/mL, 5.6+/-.6 pulses/8 h) and remained lower throughout most of the experimental period. The FSH concentrations were higher (P < .01) in PRID cows than in CYC and CYST cows on d 3 and 4. The increase in FSH concentrations preceded emergence of the PRID-induced follicular wave. All PRID cows and four of seven CYST cows initiated new follicular waves during the period of PRID treatment. Follicular waves were initiated later (P < .05) in CYST cows (d 5.2+/-1.7) and PRID cows (d 5.5+/-.6) than in CYC cows (d 1.8+/-.3). Cysts were smaller (P < .01) at the end of the treatment period in PRID cows compared with CYST cows. No CYST cows ovulated, but all PRID cows ovulated newly developed follicles 3 or 4 d after PRID removal. Treatment with exogenous progesterone reduced LH in cows with cysts, and this was followed by development of normal ovulatory follicles.  相似文献   

12.
Indomethacin (INDO, n = 5) or vehicle (CONTROL, n = 4) was injected into superovulated heifers at 48 and 60 h following a luteolytic cloprostenol injection (0 h). One heifer from each group was ovariectomized (OVX) at 48, 56, 64 and 72 h. The fifth heifer of the INDO group was OVX at 80 h. Blood samples were collected at 0 h, every 2 h between 37 and 47 h, and at the time of each OVX to monitor plasma progesterone (P4) and luteinizing hormone (LH) concentrations. Following each OVX, the number and size of follicles were recorded and the incidence of ovulation determined. Follicular fluid (FF) was aspirated from follicles greater than or equal to 8 mm to determine the concentration of prostaglandins E2 (PGE2) and F2 alpha (PGF2 alpha). The highest PG concentrations were measured in both groups at 24-25 h following the preovulatory LH surge and the PGF2 alpha concentration at this time was significantly greater (p less than 0.01) in the CONTROL group compared to the INDO group. By 35-36 h after the LH surge, 75% (25/34) of the CONTROL follicles had ovulated, whereas there were no ovulations (0/50) on either ovary of the INDO treated heifer. These preliminary results suggest that the preovulatory rise of PGs in FF, particularly PGF2 alpha, is essential for ovulation and that suppression of this rise with indomethacin will inhibit ovulation in heifers.  相似文献   

13.
This study examined the ability of estradiol-17 beta (E2) to suppress LH release in the sow during different months of the year. Six chronically ovariectomized sows were fitted with vena caval cannulas (d 0) and blood samples were collected at 6-h intervals for 6 d. Sows were treated s.c. with E2 capsules (24 mg of E2/275 kg of BW) at d 3. Additional blood samples were collected at 15-min intervals for 8 h on d 2 and 5. After each 8-h frequent sampling period, sows were treated i.v. with GnRH at .5 microgram/kg of BW, and blood samples were collected at 10-min intervals for 3 h. The protocol was repeated at monthly intervals for 13 mo. Luteinizing hormone concentrations were determined for all serum samples, and E2 concentrations were quantified in samples collected at 6-h intervals. Data were analyzed by split-block analyses of variance. Serum E2 concentrations increased (P less than .001) from 5.0 +/- .3 pg/ml before E2 treatment to 26.0 +/- .2 pg/ml after E2 treatment. The interval from GnRH administration to peak LH concentration was shorter (P less than .001) before E2 treatment than after E2 treatment (28.7 +/- 2.2 vs 71.0 +/- 2.2 min). It was evident that baseline LH, mean LH, pulse frequency, and pulse amplitude and LH release after GnRH administration failed to demonstrate seasonal changes. In summary, LH release was suppressed after treatment with E2 and was affected minimally by month of the year. In addition, E2 inhibitory effects of LH release included hypothalamic and anterior pituitary sites of action.  相似文献   

14.
In order to determine the role of follicle-stimulating hormone (FSH) on the resumption of ovarian function in cows early postpartum (PP), bovine follicular fluid (FF) was used to selectively suppress concentrations of FSH. Calves were removed from all cows within 24 hr of birth. Follicular fluid that was treated with charcoal to remove steroids (15 ml; n = 14) or serum (S) from an ovariectomized cow (15 ml, n = 14) was injected i.m. twice daily from days 1 to 10 PP. Blood samples were collected before each injection and frequent samples (every 15 min for 6 hr) taken on days 5 and 10 PP. Eight cows from each group (FF and S) were slaughtered on the morning of day 11 PP and pituitaries and ovaries collected. The remaining cows (n = 6) were observed for estrus. Treatment with FF delayed follicular growth (P less than 0.01), as evidenced by the largest follicle per cow observed at time of slaughter (3.6 +/- 0.42 vs 11.5 +/- 1.77 mm dia; FF vs S). The intervals from parturition to first estrus (P less than 0.11) and to first progesterone rise (25.3 +/- 1.97 vs 18.0 +/- 3.62 d; P less than 0.06) tended to be delayed by treatment with FF vs S. Many of the cows treated with S ovulated by day 10 PP, they were divided retrospectively into those that had ovulated by (n = 9) or after (n = 5) day 10 PP for analysis. Cows treated with FF had lower (P less than 0.05) and less variable (P less than 0.01) serum FSH concentrations while levels of luteinizing hormone (LH) tended (P less than 0.08) to be greater on days 5 and 10 PP. Follicular fluid decreased levels of FSH (P less than 0.001), but not LH (P less than 0.15), in the samples obtained twice daily compared to S-treated cows that did not ovulate by day 10 PP. Anterior pituitaries were dissociated, and cells from each cow were cultured in order to ascertain whether treatment with FF in vivo would affect gonadotropin secretion in vitro. Estradiol-17 beta (E) was incubated with pituitary cells to determine the effect of E on gonadotropin secretion from cells of PP cows, and to ascertain whether treatment with FF in vivo and with E in vitro would interact to affect secretion of FSH and LH in culture. After 2 d of incubation, cells were treated with 10(-9) M E or vehicle (1% ethanol).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Regulation of pulsatile LH secretion by ovarian steroids in the heifer   总被引:1,自引:0,他引:1  
Two experiments were conducted to evaluate relationships among luteinizing hormone (LH), estradiol-17 beta (E2) and progesterone secretion during the preovulatory period in the heifer after prostaglandin F2 alpha (PGF2 alpha)-induced regression of the corpus luteum. A second objective was to elucidate the effects of E2 in regulating LH secretion. In Exp. 1, LH, E2 and progesterone concentrations were determined in serial samples collected during the preovulatory period after PGF2 alpha-induced luteal regression in five Red Angus X Hereford heifers. Progesterone declined to 1 ng/ml by 12 h after the second injection of PGF2 alpha. Frequency of LH pulses increased linearly (P less than .01), whereas no change in amplitude of LH pulses was detected before the preovulatory LH surge. This resulted in a linear increase (P less than .01) in mean LH concentrations. Estradiol also increased in a linear manner (P less than .01), and the rise in E2 was parallel to the increase in mean LH concentrations. In Exp. 2, 12 Angus X Hereford heifers were ovariectomized and administered either 13.5- or 27-cm silastic implants containing E2 at ovariectomy. Four heifers served as nonimplanted controls. Thirty-one days after ovariectomy all heifers were bled at 12-min intervals for 6 h. Frequency of LH pulses declined linearly (P less than .03) while mean LH (P less than .09) and pulse amplitude (P less than .01) increased linearly as E2 dose increased. These results indicate that a reduction in progesterone increases the frequency of LH pulses during the follicular phase of the estrous cycle in cattle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Ketosis is found in various pathophysiological conditions, including diabetes and starvation, that are accompanied by suppression of gonadal activity. The aim of the present study was to determine the role of ketone body in the brain in regulating pulsatile luteinizing hormone (LH) secretion in female rats. Injection of 3-hydroxybutyrate (3HB), a ketone body, into the fourth cerebroventricle (4V) induced suppression of pulsatile LH secretion in a dose-dependent manner in ovariectomized (OVX) rats with an estradiol (E2) implant producing diestrus plasma E2 levels. Plasma glucose and corticosterone levels increased immediately after the 4V 3HB injection, suggesting that the treatment caused a hunger response. The 3HB-induced suppression of LH pulses might be mediated by noradrenergic inputs to the hypothalamic paraventricular nucleus (PVN) because a local injection of α-methyl- p-tyrosine, a catecholamine synthesis inhibitor, into the PVN blocked 3HB-induced suppression of LH pulses and PVN noradrenaline release was increased by 4V 3HB injection in E2-primed OVX rats. These results suggest that ketone body sensed by a central energy sensor in the hindbrain may suppress gonadotropin release via noradrenergic inputs to the PVN under ketosis.  相似文献   

17.
Two trials were conducted in which Angus x Hereford first-calf cows were assigned randomly at calving to one of two treatments: exposure to mature penile-blocked bulls (BE) or isolation from bulls (NE). In Trial 1 (BE, n = 38; NE, n = 37), cow to bull ratio increased from 12:1 to 19:1 over a 14-d period; in Trial 2 (BE, n = 25; NE, n = 24), this ratio was maintained at 13:1. In both trials, blood samples were collected weekly for progesterone and ovaries and uteri of cows were examined rectally. Cows were observed for estrus twice daily (am:pm) beginning 10 d after calving. In Trial 2, intensive blood sampling for LH began 10 d after calving (eight cows per treatment) and continued at weekly intervals until estrus or the end of the trial. Postpartum weight change, condition score change and time to uterine involution did not differ (P greater than .10) between treatments in either trial. Interval to estrus was shorter (P less than .05) for BE cows than for NE cows in both trials. A greater proportion (P less than .05) of BE cows exhibited estrus by 60 and 90 d after calving and showed an increase in progesterone before first estrus. Mean and baseline LH concentrations and amplitude, frequency and duration of LH pulses were not altered (P greater than .10) by bull exposure. In conclusion, exposing first-calf suckled beef cows to bulls after calving hastened resumption of estrous cycles. Bull exposure did not alter patterns of LH concentrations but did increase proportions of cows that showed increased progesterone before first estrus.  相似文献   

18.
Effects of testosterone propionate (TP) treatment on plasma concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) before and after an injection of gonadotropin releasing hormone (GnRH) were studied using ovariectomized cows and pony mares. An initial injection of GnRH (1 microgram/kg of body weight) was followed by either TP treatment or control injections for 10 (cows) or 11 (ponies) d. A second GnRH injection was administered 1 d after the last TP or oil injection. Concentrations of LH and FSH were determined in samples of plasma taken before and after each GnRH injection. Control injections did not alter the response to GnRH (area under curve) nor the pre-GnRH concentrations of LH and FSH in ovariectomized cows or ponies. Testosterone treatment increased (P less than .01) the FSH release in response to GnRH in ovariectomized mares by 4.9-fold; there was no effect in cows, even though average daily testosterone concentrations were 59% higher than in pony mares. Testosterone treatment reduced the LH release in response to GnRH by 26% in ovariectomized mares (P less than .05) and by 17% in ovariectomized cows (P approximately equal to .051). These results are consistent with a model that involves ovarian androgens in the regulation of FSH secretion in the estrous cycle of the mare, but do not support such a model in the cow.  相似文献   

19.
The purpose of this study was to investigate the effects of estradiol(E)and progesterone(P)on mastocyte distribution in the uterus of ovariectomized rats.Thirty-five adult female rats were divided randomly into seven groups:one sham operated control group(SHAM);one ovariectomized group(OVX);three ovariectomized plus E treatment groups(OVX+E 20,100,or 500 μg/kg body weight·d);and two ovariectomized plus P groups(OVX+P 2 or 10 mg/kg body weight·d).Seven days after treatment,the contents of estradiol and progesterone in serum were detected by radioimmunoassay,and mastocytes in the uterus were stained by toluidine blue staining.Results were as following:① Compared to ovariectomized rat,the concent ration of estradiol in serum increased by 97.13 % in OVX+E 20(P0.05),204.84 % in OVX+E 100(P0.05),and 936.45 % in OVX + E 500 group(P0.05);the progesterone concent ration increased by 77.25 % in OVX+P 2(P0.05)and 235.25 %in OVX+P 10 group(P0.05).② Compared to ovariectomized rat,the number of mast cells in uteri decreased by 32.65% in OVX+E 20,64.50 % in OVX+E 100(P0.05),74.49 % in OVX+E 500(P0.05)and 70.67 % in OVX+P 10 groups(P0.05).However,the number of mast cells increased by 66.73% in OVX+P 2 group(P0.05)compared with OVX.The trend of mast cells number in the rat uterus was decreased gradually with the increase of estrogen or progesterone concent ration.The number of mast cells in ovariectomized rat uterus was affected by estrogen or progesterone.These results demonstrated that estrogen or progesterone directly affected the number of mast cells in the uterus of rat.  相似文献   

20.
Crossbred gilts were ovariectomized (OVX) at 120, 150, 180 and 210 d of age to determine whether various characteristics of luteinizing hormone (LH) concentrations are influenced by age and reproductive state (prepuberal vs postpuberal). All 120-d-old gilts were prepuberal and all 210-d-old animals were postpuberal, whereas gilts 150 and 180 d old included both prepuberal and postpuberal animals. Blood was collected at 15-min intervals for 2 h, 2 d before OVX (d -2), and 2 (d +2), 8 (d +8) and 14 (d +14) d after OVX. Mean LH concentrations for prepuberal gilts were similar among age groups (P greater than .05) on d -2 and +2; however, LH increased (P greater than .05) from d -2 to +2. No change in LH secretion was found in postpuberal gilts during these two periods. After OVX, LH increased from d +2 to +14 in both prepuberal and postpuberal gilts in all age groups. In postpuberal gilts, LH increased linearly (P less than .05) between d +2 and +14; rate of increase accelerated with advancing age (P less than .01). In prepuberal gilts, LH increased in a nonlinear manner, but it did not increase between d +2 and +8. The increase observed in prepuberal and postpuberal gilts after OVX resulted primarily from an increase in magnitude of peak concentrations of LH. Implants of estradiol-17 beta (E2) were used to determine whether the postovariectomy increase in LH is affected differently by E2 in prepuberal and postpuberal gilts during advancing ages.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号