DOI: 10.3724/SP.J.1118.2017.16351

刀鲚水通道蛋白1的分子克隆及高盐作用下的表达分析

王美垚^{1,2},杨健^{1,2},徐跑^{1,2},徐钢春^{1,2},徐东坡²,尤洋²,刘凯², 段金荣²,周彦锋²,方弟安²,张敏莹²,俞振飞²

1. 南京农业大学 无锡渔业学院, 江苏 无锡 214081;

2. 中国水产科学研究院 淡水渔业研究中心, 农业部淡水渔业和种质资源利用重点实验室, 江苏 无锡 214081

摘要:采用 cDNA 末端快速扩增技术(Rapid Amplification of cDNA Ends, RACE)克隆获得了刀鲚(*Coilia nasus*)水通 道蛋白 1(AQP1)全长 cDNA 序列。其碱基序列全长为 1299 bp, 5′端、3′端非翻译区(untranslated regions, UTR)长度 分别为 107 bp 和 458 bp,开放阅读框(open reading frame, ORF)长度为 777 bp,共编码 258 个氨基酸。理论等电点 是 6.13,蛋白分子量为 27.1 kD。结构分析表明,刀鲚 AQP1 具有水通道蛋白家族典型结构特征,包括 6 个跨膜结 构域,2 个天冬酰胺-脯氨酸-丙氨酸(NPA)特征序列,同时还具有 AQP1 抑制剂含汞化合物的半胱氨酸结合位点。 序列同源性及系统进化分析表明,其与同属鲱形目的大西洋鲱的同源性最高(93%),并且与其聚为一支。实时荧光 定量分析结果表明,刀鲚 *AQP1* 基因在多种组织中有表达,包括脑、鳃、肝、前肠、后肠、中肾、肌肉。高盐度作 用后,*AQP1* 在渗透调节作用关键组织鳃、中肾、肠中的表达水平有显著差异(*P*<0.05),体现了 *AQP1* 在刀鲚渗透调节中 的重要作用。本研究结果可为今后进一步探讨刀鲚渗透调节相关基因的调控机制提供理论参考。

关键词:刀鲚;水通道蛋白1;基因克隆;盐度;组织表达 中图分类号:S917 文献标志码:A 文章编号:1005-8737-(2017)03-0449-10

水通道蛋白(aquaporins, AQPs),是一类协助水 分子及其他溶质小分子如尿素、甘油、氨、二氧化 碳等高效、被动跨膜运输的膜整合蛋白,它广泛存 在于动物、植物以及微生物的各种组织内,如大西 洋鲑(*Salmo salar*)的鳃、脑、肝,小鼠(*Mus musculus*) 的肌肉、肾、消化道、生殖腺,黄瓜(*Cucumis sativus* L.)的种子,大麦(*Hordeum vulgare* L.)的叶子等^[1-4]。 水通道蛋白在哺乳动物以及植物上的研究较为广泛 和深入。现今,在哺乳动物中已发现有 13 个水通道 蛋白家族成员(AQP0-12)^[5]。AQP1 是最早发现,也 是具有最广泛功能的水通道蛋白。在哺乳动物中的 相关研究多集中在疾病方面,如 AQP1 表达的组织 差异性以及表达量的上调或下调,与疾病尤其是肿 瘤的发生有关^[6];而植物体内 AQP1 的研究多集中 在植物抗逆性上。研究发现,当植物处于不利环境 中如低温、干旱及高盐环境中时, AQP1 通过调节其 表达量,并与多类逆境胁迫蛋白发生相互作用等方 式来增强植物体的抗逆性^[7-8]。在水产动物上,已经 克隆获得了大西洋鲑(Salmo salar)、金头鲷(Sparus aurata)、欧洲鲈(Dicentrarchus labrax)、日本鳗鲡 (Anguilla japonica)、黄鳝(Monopertus albus)、日本 青鳉(Oryzias latipes)、斑马鱼(Danio rerio)、三疣梭 子蟹(Portunus trituberculatus)等的 AQP1 全长 cDNA 序列,并开展了相应的组织表达分析。同时也开展 了一些低温及高盐或低盐环境中组织表达模式的研 究^[9-16]。研究结果表明, AQP1 的序列具有水通道蛋 白家族典型的保守结构特征,即每个分子拥有 6 个 跨膜螺旋,均具有两个天冬酰胺-脯氨酸-丙氨酸 (Asn-Pro-Ala, NPA)的保守性基序。但就其组织表达 方面,具有显著的物种间特异性。

收稿日期: 2016-11-25; 修订日期: 2017-01-16.

基金项目:农业部公益性行业专项(201203065);国家水产种质资源平台项目(2015DKA30470_003).

作者简介: 王美垚(1984-), 女, 博士. E-mail: wangmy930@163.com

通信作者: 徐跑, 研究员. E-mail: xup@ffrc.cn; 杨健, 研究员. E-mail: jiany@ffrc.cn

刀鲚(Coilia nasus)隶属于鲱形目(Clupeiformes)、 鳀科(Engraulidae)、鲚属,是我国长江重要的经济洄 游性鱼类,其味道鲜美,与鲥、河鲀并称为"长江三 鲜", 广受人民喜爱^[17]。现今, 学者们就刀鲚的生物 学特性、繁养殖技术、营养品质、抗应激技术等方 面开展了一些研究[18-21]。刀鲚幼鱼有入海肥育的特 性,在此过程中将经历盐度等环境因子的作用、因 而渗透调节对于该鱼的顺利洄游发挥着极为重要的 作用。现今,鲜有有关刀鲚渗透调节方面的报道^[22]。 如前文所述, AQP1 在水产动物调控水-盐代谢, 维 持血浆渗透压,进而维持鱼体内稳态方面发挥着重 要作用,但其调控模式因物种不同而有较大差异, 因此本研究采用 RACE 方法克隆获得了刀鲚 AQP1 的 cDNA 全长序列, 并开展了其在盐度作用下的组 织表达模式研究,旨在为今后更好地开展刀鲚的渗 透调节机制提供理论参考。

1 材料与方法

1.1 实验鱼

实验鱼为5月龄体长(133.5±0.9) cm、体重(8.78± 0.6) g 的刀鲚幼鱼, 采自中国水产科学研究院淡水 渔业研究中心宜兴起亭养殖基地。实验前在室内循 环水水泥池暂养 20 d, 连续增氧, 期间水温为(20± 0.8)℃, pH 为 7.3, 溶解氧含量为(8.3±0.7) mg/L。每天 于 7:00、12:00、17:00 进行投喂。实验前一天停止 投喂。

1.2 盐度试验

试验分为对照组和实验组,对照组为淡水养殖 组,实验组以加 NaCl 的方式来实现水体盐度为 15。 各设立 3 个平行组,在 6 个养殖桶内进行,每桶放 15 尾鱼。分别于试验后 0 h、2 h、4 h、6 h、8 h 时在 对照组和实验组分别采样,每次采集 2 尾鱼,将其 鳃、脑、心脏、肝、脾、前肠、后肠、中肾、肌肉组织 迅速冻于液氮中,而后存于-80℃冰箱以备后续实验。

1.3 总 RNA 的提取和 AQP1 基因中间序列的获得

取对照组刀鲚的脑组织, 按照 RNAiso reagent (TaKaRa)试剂盒说明书提取总 RNA。使用 Recombinant DNase I (TaKaRa)来去除 DNA, 使用核酸分析仪 (Eppendorf)以及 1%琼脂糖凝胶电泳检测 RNA 质量 和浓度。根据日本鳗鲡(Anguilla japonica, AB094502.1)、 欧洲鳗鲡(Anguilla anguilla, AJ564420.1)、金头鲷 (Sparus aurata, AY626939.1)、重牙鲷(Diplodus sargus, JN210582.1)、青鳉(Oryzias dancena, AB759556.1)、 暗纹东方鲀(Takifugu obscurus, GQ325617.1)、尼罗 罗非鱼(Oreochromis niloticus, XM 003438085.3)、小 鼠(Mus musculus, NM 007472.2)、人(Homo sapiens, AB451275.1) AQP1 基因的 cDNA 的保守区序列使用 Primer Premier 5 软件设计正反引物 P1 和 P2(表 1)。 使用 PrimeScript One Step Enzyme Mix(TaKaRa)进 行扩增,反应条件为: 50℃ 30 s, 94℃预变性 2 min; 而后94℃变性30 s, 58℃延伸30 s, 共30个循环; 最 后 72℃延伸 1 min。1%琼脂糖凝胶电泳检测,用 TaKaRa MiniBEST Agarose Gel DNA Extraction Kit (TaKaRa)回收长度为 700 bp 的目的片段,将其连接 至 pMD18-T 载体(TaKaRa)并转入 E. coli DH5α 感 受态细胞内(TaKaRa),送至上海铂尚生物技术有限 公司测序,获得 736 bp 片段, 经 NCBI Blastx 比对, 证明是 AOP1 基因同源序列。

表1 本研究中所用引物 Tab 1 Primers used in this study

iub. 1 Timers used in this study			
引物 primer	序列(5'-3') sequence(5'-3')	功能 function	
P1	GCGAGATCAAGAGCAAGGCATTC	扩增 AQP1 保守区正向引物 forward degeneratate primer for AQP1 amplification	
P2	CTCAACGCGAGGACGTCATAGTC	扩增 AQP1 保守区反向引物 reverse degeneratate primer for AQP1 amplification	
P3	GTGGCCGCAGCACTTGTATAC	扩增 AQP1 的 3'端第一轮正向引物 forward primer for AQP1 3' outer RACE	
P4	CGACCGCATGAAGGTGCTCC	扩增 AQP1 的 3'端第二轮正向引物 forward primer for AQP1 3' inner RACE	
P5	CTGCGGTGATGCTGAGGAAG	扩增 AQP1 的 5'端第一轮反向引物 reverse primer for AQP1 5' outer RACE	
P6	GAAGAGGGTCATGCCCAGCAG	扩增 AQP1 的 5'端第二轮反向引物 reverse primer for AQP1 5' inner RACE	
P7	GAGCCTCCGATCCAGACAGAG	荧光定量 PCR 扩增 β -actin 的正向引物 forward primer for β -actin qRT-PCR	
P8	CATGAAGTGTGATGTCGACATCC	荧光定量 PCR 扩增 β -actin 的反向引物 reverse primer for β -actin qRT-PCR	
Р9	CACATCAGTGGCGCTCACCTG	荧光定量 PCR 扩增 AQP1 的正向引物 forward primer for AQP1 qRT-PCR	
P10	CCAGCGAGCCCATTGAGTC	荧光定量 PCR 扩增 AQP1 的正向引物 reverse primer for AQP1 qRT-PCR	

1.4 刀鲚 AQP1 基因 RACE 扩增实验

根据测得的刀鲚 AQP1 中间段序列,设计 5'-RACE 与 3'-RACE 特异性引物 P3-P6 (表 1)。使用 RACE 方法扩增刀鲚 AQP1 基因的 5'端与 3'端序列。回 收目的片段,将其连接至 pMD18-T 载体(TaKaRa)并 转入 E. coli DH5α 感受态细胞(TaKaRa)内测序。然 后运用 ContigExpress 软件将保守区序列、5'端序列 以及3′端序列进行拼接,得到刀鲚AQP1全长 cDNA 序列。

1.5 AQP1 核酸及推导的氨基酸序列分析

使用 DNAstar 软件中的 EditSeq 将 AQP1cDNA 序列翻译为氨基酸序列(图 1),使用等电点与分子量 在线预测软件(http://isoelectric.ovh.org/)进行分析,用 SOPMA 在线工具(http://nhjy.hzau.edu.cn/kech/

1	cacacaaacacacacacacatagtcaaaccaacggggctatccttaacctcctctacc	60
1	MKSEIKSKAFWRAVLAELL	19
61	$\verb+agcc+ATGAAGAGCGAGATCAAGAGCAAGGCATTCTGGAGGGCCGTGCTGGCTG$	120
20	G M T L F I F L S I T A A I G N D Q L D	39
121	GGGCATGACCCTCTTCATCTTCCTCAGCATCACCGCAGCCATCGGCAACGACCAGCTGGA	180
40	E V K T S L A F G L A I A T L A Q S L G	59
181	CGAGGTGAAGACGTCGCTGGCCTTCGGCCTGGCCATCGCCACACTCGCCCAGAGCCTGGG	240
60	H I S G A H L N P A V T L G M L A S C Q	79
241	${\tt CCACATCAGTGGCGCTCACCTGAACCCGGCCGTCACCCTGGGCATGCTGGCCAGCTGCCA}$	300
80	I S V L R A A M Y I V A Q M L G A T V A	99
301	GATCAGCGTGCTGCGTGCCGCCATGTACATCGTGGCGCAGATGCTGGGGGCCACCGTGGC	360
100	S G I I Y G V R P Q T N D K L G L N G L	119
361	${\tt Cagtgggatcatctacggagtcaggccacagaccaacgataagctgggactcaatgggct}$	420
120	A G V T P S Q G I G I E L L A T F Q L V	139
421	${\tt CGCTGGTGTGACCCCAAGTCAAGGTATTGGCATCGAACTGCTGGCCACCTTCCAGCTTGT}$	480
140	L C V I A T T D K R R R D V A G S A P L	159
481	${\tt CCTGTGTGTCATAGCAACCACAGATAAAAGGCGGCGGGACGTGGCAGGCTCTGCTCCCTT}$	540
160	A I G L S V A L G H L T A I S F T G C G	179
541	${\tt GGCCATTGGTCTCTGTTGCTCTGGGACACTTGACAGCCATAAGCTTCACTGGGTGTGG}$	600
180	I N P A R S F G P A V I L S D F T N H W	199
601	TATCAACCCTGCACGCTCCTTTGGACCTGCTGTCATTCTGAGCGATTTCACCAATCACTG	660
200	VYWVGPMCGGVAAALVYDFL	219
661	GGTGTACTGGGTCGGGGCCAATGTGCGGAGGCGTGGCCGCAGCACTTGTATACGACTTCCT	720
220	L Y P K M D D F P D R M K V L L S G S A	239
721	${\tt GCTCTACCCCAAAATGGACGACTTCCCCGACCGCATGAAGGTGCTCCTCAGTGGGTCGGC}$	780
240	K D Y D V N G V E D S T G V E M S S K *	258
781	${\tt caaggactatgacgtcaacggagttgaagactccacgggcgttgagatgtcgtcaaag\underline{tg}}$	840
841	\underline{A} aag cttg ccaaccette cg ttt catg ta cagt cte te ta aat gaat at gaat acacat g	900
901	aagattgtttctatgtcagcaaaatagcttttctactttgaatgaa	960
961	${\tt gatatgcacactacattcagattcgcatactcttgtttgt$	1020
1021	${\tt atcaaagaaggcatgtgtgttacagataatgtaagataactttttattgtctcaatgagt}$	1080
1081	gggctccaacatcagtattttagatgtagaatcacatatttttgtaaactattttctatg	1140
1141	taaatgtttattgtatcgttttatatttgtactctgtgtgcacaactattccttgtcttc	1200
1201	acttttgtaagtaaatgagaacacatgttgggtgtctaacaactatgtatcttccacttg	1260
1261	ttactggaaaattgctaccccttattattgaaaataaaa	1299

图 1 刀鲚 AQP1 的 cDNA 序列及推导的氨基酸序列

该序列在 GenBank 上的登录号为 KY216191. 小写字母代表 3'UTR 和 5'UTR 区, 起始密码子与终止密码子用下划线表示.

Fig. 1 The full-length cDNA nucleotide and deduced amino acid sequences of AQP1 of Coilia nasus

The GenBank accession no. of above sequence was KY216191. The lowercase letters are the

3'UTR and 5'UTR. Start codons and stop codons were underlined.

swxxx/jakj/dianzi/Bioinf7/Expasy/Expasy8.html)分析 推导氨基酸序列二级结构,用 TMPRED 在线软件 (http://www.expasy.org/tools/protscale.html)分析跨膜 结构,使用 PROSITE 在线工具(http://au.expasy.org/ prosite/)分析功能域,使用 DNAstar 软件中的 MegAlign 比对氨基酸序列同源性,用 Mega5.0 软件采用邻接法 (Neighbour-Joining)构建相关物种的系统进化树,相关物 种 AQP1 在 GenBank 上的登录号见表 2。

表 2 本研究中其他物种 AQP1 氨基酸 序列的 GenBank 序列号 Tab. 2 GenBank accession numbers of AQP1 amino acids sequences used in this study

物种 species	序列号 accession number
大西洋鲱 Clupea harengus	XP_012683423.1
金头鲷 Sparus aurata	AAV34610.1
重牙鲷 Diplodus sargus	AEU08496.1
黑棘鲷 Acanthopagrus schlegelii	ABO38816.1
暗纹东方鲀 Takifugu obscurus	ADG86337.1
底鳉 Fundulus heteroclitus	NP_001296903.1
杂色鳉 Cyprinodon variegatus	XP_015225343.1
胡瓜鱼 Osmerus mordax	ACO09149.1
斑马鱼 Danio rerio	NP_996942.1
家犬 Canis lupus familiaris	NP_001003130.1
小鼠 Mus musculus	EDK98728.1
人 Homo sapiens	CAQ51480.2

1.6 刀鲚 AQP1 基因的组织表达分析

1.6.1 刀鲚 AQP1 基因在不同组织中的表达分析

取对照组 0 h 时间点的刀鲚留存的各组织包括鳃、脑、肝、心脏、脾、中肾、前肠、后肠、肌肉开展 实时荧光定量分析。根据已报道的 β-actin 序列,比 对分析,设计刀鲚内参基因 β-actin 的特异引物 P7 和 P8,根据获得的刀鲚 AQP1 全长序列设计特异引 物 P9、P10,用于扩增 185 bp 片段。引物序列见表 1。 在 ABI7500(ABI, USA)上开展实时荧光定量 PCR 分 析。反应条件为:95℃ 30 s; 40 个循环:95℃ 5 s, 60℃ 34 s, 72℃ 50 s。各平行组各取 1 尾刀鲚,即每种组 织有 3 个样品,每个样品做 3 次重复,表达量用 $2^{-\Delta\Delta C_{T}}$ 法计算 AQP1 mRNA 相对表达量^[23]。以 SPSS 21.1 软件采用单因素分析法中的 Ducan's 多重比较 法进行分析,实验结果以平均值±标准差(\bar{x} ±SD) 来表示, P<0.05 视为差异显著。

1.6.2 刀鲚 AQP1 基因在盐度作用下的组织表达分析 对于硬骨鱼类, 鳃、肠道和肾脏是用于协调离 子和水运输来维持鱼体渗透平衡的重要组织^[24], 因

此本实验选取刀鲚的鳃、中肾、前肠、后肠开展其盐度作用下的实时荧光定量分析。取对照组和实验 组各时间点包括盐度作用下0h、2h、4h、6h、8h 的刀鲚,各平行组各取两尾刀鲚,共6个样品,每个样 品做3次重复,试验方法及数据分析方法同1.6.1所述。

2 结果与分析

2.1 刀鲚 AQP1 的序列及结构分析

通过 RACE 方法, 克隆获得刀鲚全长 cDNA 序 列, 其中 5'端 UTR 为 107 bp, 开放阅读框为 777 bp, 3'端 UTR 长度为 458 bp, 编码 258 个氨基酸(图 1)。 理论等电点是 6.13, 蛋白分子量为 27.1 kDa。其中 包含有 22 个碱性氨基酸(精氨酸+赖氨酸+组氨酸)和 19 个酸性氨基酸(天冬氨酸+谷氨酸)。刀鲚 AQP1 结 构分析表明, 其具有 6 个跨膜结构域,分别位于 10~36, 40~59, 86~107, 126~146, 158~173, 198~218 氨基酸处;同时还具有 2 个 AQP 家族蛋白高度保守 的天冬酰胺–脯氨酸–丙氨酸(NPA)特征序列,分别 位于 67~69 和 181~183 氨基酸处;在氨基酸 178 位 点上,还具有 AQP1 抑制剂含汞化合物的半胱氨酸 结合位点(图 2)。

2.2 刀鲚 AQP1 的同源性分析

ClustalX2.1 氨基酸序列比对结果表明,刀鲚 AQP1 氨基酸序列与已报道的物种具有较高的同源 性,与大西洋鲱(Clupea harengus)的同源性为 93%, 与金头鲷(Sparus aurata)、重牙鲷(Diplodus sargus)、 黑棘鲷(Acanthopagrus schlegelii)的同源性均为 82%, 与杂色鳉(Cyprinodon variegatus)、底鳉(Fundulus heteroclitus)的同源性为 81%,与暗纹东方鲀(Takifugu obscurus)的同源性为 81%,与暗纹东方鲀(Takifugu obscurus)的同源性为 80%,与胡瓜鱼(Osmerus mordax)的同源性为 79%,与斑马鱼(Danio rerio)的 同源性为 77%,与小鼠(Mus musculus)的同源性为 61%,与家犬(Canis lupus familiaris)的同源性为 60%,与人(Homo sapiens)的同源性为 59%。

2.3 刀鲚 AQP1 的系统进化分析

如图 3 所示, Mega5.0 软件构建的系统进化树结 果表明, 水产动物与哺乳动物 AQP1 各自聚为一类。 其中刀鲚与大西洋鲱同属鲱形目, 二者首先聚为一 分支, 金头鲷、重牙鲷、黑棘鲷聚为一类; 而后刀鲚 与其聚为一类; 然后, 刀鲚依次与斑马鱼、胡瓜鱼、 暗纹东方鲀、底鳉、杂色鳉进行聚类。哺乳动物包 括家犬、小鼠和人的 AQP1 聚为另一分支。

图 2 刀鲚 AQP1 与其他相关物种氨基酸序列的多重比对

阴影部分表示的是比对结果中一致的氨基酸; 6 个跨膜螺旋区(TMD1-6)以横线标识; 2 个 NPA 保守基序以方框表示; 抑制剂
HgCl₂的半胱氨酸结合位点以"▲"表示. 最左侧为序列名称, 前两个字母为物种名称缩写. As, 黑棘鲷; Ch, 大西洋鲱; Cl, 家犬; Cn, 刀鲚; Cv, 杂色鳉; Dr, 斑马鱼; Ds, 重牙鲷; Fh, 底鳉; Hs, 人; Mm, 小鼠; Om, 胡瓜鱼; Sa, 金头鲷; To, 暗纹东方鲀.
Fig. 2 Multiple alignment of amino acids sequence of *Coilia nasus* AQP1 in comparison with those from other relevant species Completely identical amino acid residues were shown in shades. Six transmembrane domains (TMD1-6) were indicated with horizontal lines. Two highly conserved "NPA" motifs were marked in boxes. Binding site for AQP1-inhibitor HgCl₂ was indicated with filled triangle (▲). The left letters were sequence names and the first two letters represented species' names. The specific meanings were as follows: As, *Acanthopagrus schlegelii*; Ch, *Clupea harengus*; Cl, *Canis lupus familiaris*; Cn, *Coilia nasus*; Cv, *Cyprinodon variegatus*; Dr, *Danio rerio*; Ds, *Diplodus sargus*; Fh, *Fundulus heteroclitus*; Hs, *Homo sapiens;* Mm, *Mus musculus*; Om, *Osmerus mordax*; Sa, *Sparus aurata*; To, *Takifugu obscurus*.

图 3 刀鲚 AQP1 序列与其他物种 AQP1 序列的进化分析 采用邻接法进行分析,系统进化树上的节点数值为 1000 次评估的自举检验置信度. Fig. 3 Phylogenetic analysis on *Coilia nasus* AQP1 in comparison with those from other species Phylogenetic tree was constructed with NJ (Neighborur-Joining) method. The values at the nodes indicate the bootstrap percent when bootstrap replications reach 1000.

2.4 刀鲚 AQP1 基因在不同组织中的表达分析

实时荧光定量 PCR 分析结果表明,刀鲚 AQP1 基因在脑、鳃、肝、前肠、后肠、中肾、肌肉组织 中均有表达,在心、脾组织中未有表达。在脑组织 的表达量最高,其次是在中肾、鳃、前肠和后肠中表 达量也较高,表达量较低的组织是肝和肌肉(图 4)。

2.5 刀鲚 AQP1 基因在盐度作用下的组织表达分析 如图 5 所示,在高盐作用 2 h 时,鳃中 AQP1 表 达水平显著下降,在中肾、前肠以及后肠组织表达

有所升高,但差异不显著(P>0.05)。在作用 4 h 时, 鳃中AQP1表达无显著变化,前肠组织中AQP1表达 水平有所升高,但差异不显著,中肾、后肠组织中 AQP1表达水平显著升高(P>0.05);经高盐作用 6 h 后,鳃、中肾组织中 AQP1 基因的表达水平无显著 变化,后肠组织中 AQP1 表达水平略有升高,但无 显著差异,前肠组织中 AQP1 基因的表达水平显著 升高(P>0.05);经高盐作用 8 h 后,前肠中 AQP1 表 达水平略有升高,但差异不显著,其余各组织中 AQP1 的表达无显著变化。

3 讨论

3.1 刀鲚 AQP1 的序列特征

AQP1 隶属于水通道蛋白家族, 其单体分子量 为 20~30 kD。其一级氨基酸序列含有两个保守的 NPA 序列, 其立体结构是由 6 个跨膜螺旋区与 5 个 环结构相间连接, 最终形成一个具有中空孔道的跨 膜结构^[25-26]。本研究克隆获得的刀鲚 AQP1 序列分 子量为 27.1 kDa, 且具有水通道蛋白家族所共有的 保守序列及功能结构域, 即两个 NPA 重复基序以及 6 个跨膜螺旋区。在氨基酸 178 处, 还具有水通道蛋 白家族中对汞化合物敏感的大多数成员所具有的半 胱氨酸位点。在这些保守结构中, NPA 基序对于 AQP1 发挥水分子运输功能具有关键作用。Kong 等^[27] 开展了 AQP1 分子动态模拟研究, 姜勇等^[28]开展了 NPA 缺失型的 AQP1 转水功能研究, 结果表

图 5 刀鲚 AQP1 基因在盐度作用下在鳃、中肾、前肠、后肠中的表达

A. 盐度作用下刀鲚 AQP1 基因在鳃中的表达; B. 盐度作用下刀鲚 AQP1 基因在中肾中的表达; C. 盐度作用下刀鲚 AQP1 基因在前肠中的表达; D. 盐度作用下刀鲚 AQP1 基因在后肠中的表达. *代表实验组与对照组差异显著(P<0.05).
Fig. 5 Expression of AQP1 gene in gill, midkidney, anterior intestine and posterior intestine of *Coilia nasus* under high salinity A. Expression of AQP1 in gill; B. Expression of AQP1 in midkidney; C. Expression of AQP1 in anterior intestine;
D. Expression of AQP1 in posterior intestine. * indicates significant difference between control and experimental group (P<0.05).

明 NPA 基序的缺失会导致 AQP1 水分子输送率显著 下降,这体现了 NPA 基序对于 AQP1 发挥水分子运 输功能的重要性。综上所述, AQP1 序列的高度保守 性在刀鲚上再次得到了体现。

3.2 刀鲚 AQP1 的系统进化特征

通过与已报道的其他物种 AQP1 序列构建系统 进化树进行进化分析,结果表明,刀鲚 AQP1 与同 属鲱形目的大西洋鲱具有最近的遗传距离,金头 鲷、重牙鲷、黑棘鲷遗传距离较近,共同聚为一类, 底鳉、杂色鳉二者遗传距离较近,在进化树上也聚 为一类。刀鲚 AQP1 与海水鱼类包括金头鲷等鲷科 鱼类 AQP1 的进化关系较近,与哺乳动物包括家犬、 小鼠、人的遗传距离最远,二者分别聚类最后进行 汇聚。该 AQP1 进化树结果表明, AQP1 的进化关系 与相应物种间的遗传进化关系是一致的。

3.3 刀鲚 AQP1 基因的组织表达特征

刀鲚 AQP1 的组织表达分析表明,其在脑、鳃、 肝、前肠、后肠、中肾、骨骼肌中均有表达,这与 一些已报道的鱼类包括大西洋鲑、鲈鱼、淡水攀鲈 (Anabas testudineus)等 AQP1 表达模式基本一致^[9, 11, 29], 例如, AQP1 在大西洋鲑、鲈鱼的肌肉、鳃、脑、肾及消化道中均有表达,在淡水攀鲈皮肤内也有表达。同时,也与一些物种与此不同,如 AQP1 在欧洲鳗鲡(Anguilla anguilla)^[30]的肝、肌肉、鳃、肾中表达量极低,而在脑、心脏组织中表达量较高,对于黄鳝(Monopertus albus), AQP1 只在卵巢内有高表达,在精巢等其他组织无表达^[13]。这体现了 AQP1 介导水分子或其他小溶质分子的能力因物种生理特性的不同而异,也因此出现了组织分布的差异性; 另外,在这些 AQP1 表达水平较低,但同时又是渗透调节作用较为重要的组织,可能其他水通道蛋白家族成员发挥了作用,这还有待今后进一步研究。

对于广盐性硬骨鱼类来说,在不同盐度水体内, 鳃、肾以及消化道是发挥渗透调节功用、维持鱼体 渗透压平衡,进而维持鱼体内稳态的主要组织^[31-32]。 它们通过调节离子及水分子的透过率及重吸收率来 进行渗透调节。因而本研究选取该类组织开展盐度 作用下 AQP1 的组织表达研究。在高盐作用下,刀 鲚 AQP1 的组织表达分析表明,鳃中 AQP1 表达显著 下降。鲈、大西洋鲑、三疣梭子蟹在高盐作用后,其

鳃中 AQP1 的表达也出现显著下降, 这与本研究结果 是一致的^[9, 11, 16]。角鲨(Squalus acanthias)、美洲拟鲽 (Pleuronectes americanus)的鳃水分子透过性研究^[33], 以及赤魟(Dasvatis akajei)的盐度及鳃、肾对高碳酸 血症补偿作用的研究^[34]表明, 鳃上皮顶端膜对水分 子透过具有良好的屏障作用,对于酸根离子具有较 强的分泌作用,以维持血浆 pH 稳定性。众所周知, 鳃上皮与肾组织和肠道组织上皮相比, 其直接接触 周围环境介质,并且面临因渗透梯度较大而产生高 通量水分子流的风险。因此,从渗透调节的角度来 看, 生物体选择将鳃上皮的透水性保持在较低限度, 以维持渗透压内稳态, 是一种科学的适应模式。也 许这正是在高盐环境中, 许多水产动物鳃组织中的 AQP1 表达水平下降的原因,即通过降低水通道蛋 白表达量,减弱鳃部水分子等的透过性,维持水盐 代谢平衡,抵御环境的不良影响。

在高盐作用后,刀鲚中肾、前肠、后肠中 AQP1 的表达水平出现显著升高,这与报道的大西洋鲑、 日本鳗鲡、银鲑(Oncorhynchus kisutch)在高盐作用后, 前肠、后肠中的 AOP1 表达水平显著升高的结果是 基本一致的^[9, 12, 35]。在海湾豹蟾鱼(Opsanus beta)^[36]、 莫桑比克罗非鱼(Oreochromis mossambicus)^[37]等多 种水产动物高盐耐受的研究中表明, 在高渗环境中, 鱼类通过吞饮周围环境中的高渗液, 鳃部排盐, 同 时增大肠道、肾对水分的重吸收率的渗透调节方式 来维持鱼体渗透平衡。有关水重吸收机制,学者们 普遍认为,是位于肠上皮基底膜上的 Na/K⁺-ATP 酶 及 Na-K⁺-Cl⁻共转运体来发挥促进作用的^[38]。同时, 在欧洲川鲽(Platichthys flesus)的肠组织高渗调节研 究^[39]中、发现 HCO₃的分泌以及钙离子沉淀形成 CaCO, 所产生的渗透梯度也可以促进肠道对水分的 重吸收。本研究中,刀鲚肾、肠组织中的 AQP1 在 高盐作用下表达水平显著升高,这与鱼类高盐渗透 调节机制是一致的,同时也体现了 AQP1 在刀鲚渗 透调节中所发挥的重要作用。

本研究克隆获得了刀鲚 AQP1 基因全长 cDNA 序列,序列分析表明其具有水通道蛋白家族共有的 保守功能结构域。同时也开展了高盐作用下刀鲚 AQP1 的组织表达分析,结果表明刀鲚 AQP1 在鳃中 表达水平下降,推测在鳃部还有水通道蛋白家族其 他成员在此发挥更为重要的作用;刀鲚 AQP1 在肾、 肠等组织中表达升高,增强了水分子的重吸收,而 N å/K⁺-ATP 酶及 N å-K⁺-Cl⁻共转运体对于渗透调节 同样具有重要作用,彼此间是否有协同作用,还有 待今后进一步的研究。

参考文献:

- Matsuzaki T, Tajika Y, Tserentsoodol N, et al. Aquaporins: a water channel family[J]. Anat Sci Int, 2002, 77(2): 85–93.
- [2] Abascal F, Irisarri I, Zardoya R. Diversity and evolution of membrane intrinsic proteins[J]. Biochim Biophys Acta, 2014, 1840(5): 1468–1481.
- [3] Qian Z J, Song J J, Caumont F, et al. Differential responses of plasma membrane aquaporins in mediating water transport of cucumber seedlings under osmotic and salt stresses[J]. Plant Cell Environ, 2015, 38(3): 461–473.
- [4] Besse M, Knipfer T, Miller A J, et al. Developmental pattern of aquaporin expression in barley (*Hordeum vulgare* L.) leaves[J]. J Exp Bot, 2011, 62(12): 4127–4142.
- [5] Zardoya R. Phylogeny and evolution of the major intrinsic protein family[J]. Biol Cell, 2005, 97(6): 397–414.
- [6] Kang B W, Kim J G, Lee S J, et al. Expression of aquaporin-1, aquaporin-3, and aquaporin-5 correlates with nodal metastasis in colon cancer[J]. Oncology, 2015, 88(6): 369–376.
- [7] Bilska-Kos A, Szczepanik J, Sowinski P. Cold induced changes in the water balance affect immunocytolocalization pattern of one of the aquaporins in the vascular system in the leaves of maize (*Zea mays* L.)[J]. J Plant Physiol, 2016, 205: 75–79.
- [8] Ueda M, Tsutsumi N, Fujimoto M. Salt stress induces internalization of plasma membrane aquaporin into the vacuole in *Arabidopsis thaliana*[J]. Biochem Biophys Res Commun, 2016, 474(4): 742–746.
- [9] Tipsmark C K, Sørensen K J, Madsen S S. Aquaporin expression dynamics in osmoregulatory tissues of Atlantic salmon during smoltification and seawater acclimation[J]. J Exp Biol, 2010, 213(3): 368–379.
- [10] Raldúa D, Otero D, Fabra M, et al. Differential localization and regulation of two aquaporin-1 homologs in the intestinal epithelia of the marine teleost *Sparus aurata*[J]. Am J Physiol Regul Integr Comp Physiol, 2008, 294: R993– R1003.
- [11] Giffard-Mena I, Boulo V, Aujoulat F, et al. Aquaporin molecular characterization in the sea-bass (*Dicentrarchus labrax*): the effect of salinity on AQP1 and AQP3 expression[J]. Comp Biochem Physiol A Mol Integr Physiol, 2007, 148(2): 430–444.
- [12] Aoki M, Kaneko T, Katoh F, et al. Intestinal water absorption through aquaporin 1 expressed in the apical membrane of mucosal epithelial cells in seawater-adapted Japanese eel[J]. J Exp Biol, 2003, 206: 3495–3505.
- [13] Ding W D, Cao L P, Cao Z M, et al. Molecular cloning of aquaporin1 cDNA and multi-tissue mRNA expression in *Monopertus albus*[J]. Acta Agriculturae Boreali-Sinica, 2012,

27(suppl): 6-11. [丁炜东, 曹丽萍, 曹哲明, 等. 黄鳝 AQP1 cDNA 的克隆与表达分析[J]. 华北农学报, 2012, 27(增刊): 6-11.]

- [14] Madsen S, Bujak J, Tipsmark C K, et al. Aquaporin expression in the Japanese medaka (*Oryzias latipes*) in freshwater and seawater: challenging the paradigm of intestinal water transport[J]. J Exp Biol, 2014, 217(17): 3108–3121.
- [15] Tingaud-Sequeira A, Calusinska M, Finn R N, et al. The zebrafish genome encodes the largest vertebrate repertoire of functional aquaporins with dual paralogy and substrate specificities similar to mammals[J]. BMC Evol Biol, 2010, 10: 38.
- [16] Wang Y, Lu J J, Liu P, et al. Cloning and characterization of aquaporins 1 and its expression analysis under salinity stress in *Portunus trituberculatus*[J]. Journal of Fishery Sciences of China, 2014, 21(5): 893–901. [王渝, 吕建建, 刘萍, 等. 三 疣梭子蟹水通道蛋白1 cDNA及其盐度胁迫下的表达分析 [J]. 中国水产科学, 2014, 21(5): 893–901.]
- [17] Zhuang P, Wang Y H, Li S F, et al. Fish Species in the Yangtze River Estuaries[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2006: 153–157. [庄平, 王幼槐, 李 圣法,等. 长江口鱼类[M]. 上海: 上海科学技术出版社, 2006: 153–157.]
- [18] Gu H L, Feng Y M, You H B, et al. Research progress of resources survey and artifitial breeding of *Coilia nasus*[J]. Jiangsu Agricultural Sciences, 2016, 44(3): 265–267. [顾海 龙,冯亚明,游华斌,等.长江刀鲚资源调查与人工养殖 研究进展[J]. 江苏农业科学, 2016, 44(3): 265–267.]
- [19] Xu G C, Li Q J, Du F K, et al. Experimental study on bait domestication with expanded feed in *Coilia nasus* fingerlings[J]. Freshwater Fisheries, 2016, 46(4): 91–95. [徐钢春, 李全杰, 杜富宽,等. 长江刀鲚鱼种驯食浮性颗粒饲料试 验研究[J]. 淡水渔业, 2016, 46(4): 91–95.]
- [20] Wang M Y, Xu D P, Liu K, et al. Molecular cloning and expression analysis on LPL of *Coilia nasus*[J]. Gene, 2016, 583: 147–159.
- [21] Xu G C, Du F K, Nie Z J, et al. Effects of 10% salinity to the plasma osmotic pressure, cortisol, glucose and liver glycogen in *Colilia nasus* stressed during loading and transportation[J]. Acta Hydrobiologica Sinica, 2015, 39(1): 66-72. [徐钢春, 杜富宽, 聂志娟,等. 10%盐度对长江刀鲚幼鱼装载和运 输胁迫中应激指标的影响[J]. 水生生物学报, 2015, 39(1): 66-72.]
- [22] Deng P P, Shi Y H, Wang Y, et al. Effects of salinity on activities of non-specific immune and digestive enzymes in juvenile estuarine tapertail anchovy *Coilia nasus*[J]. Journal of Dalian Ocean University, 2016, 31(5): 533–537. [邓平平, 施永海, 汪洋, 等. 盐度对长江刀鲚幼鱼非特异性免疫酶 和消化酶活力的影响[J]. 大连海洋大学学报, 2016, 31(5): 533–537.]
- [23] Livak K J, Schmittgen T D. Analysis of relative gene ex-

pression data using realtime quantitative PCR and the $2^{-\Delta\Delta CT}$ method[J]. Methods, 2001, 25(4): 402–408.

- [24] Evans D H. Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys[J]. Am J Physiol Regul Integr Comp Physiol, 2008, 295(2): R704–R713.
- [25] Gonen T, Walz T. The structure of aquaporins[J]. Q Rev Biophys, 2006, 39(4): 361–396.
- [26] Takata K, Matsuzaki T, Tajika Y. Aquaporins: water channel proteins of the cell membrane[J]. Prog Histochem Cytochem, 2004, 39(1): 1–83.
- [27] Kong Y F, Ma J P. Dynamic mechanisms of the membrane water channel aquaporin-1(AQP1)[J]. Prog Natl Acad Sci USA, 2001, 98(25): 14345–14349.
- [28] Jiang Y, Ma T H. The importance of NPA motif in expression and water transportation of AQP1[J]. Science Bulletin, 2007, 52(4): 426-431. [姜勇, 麻彤辉. NPA motif 在水通道 蛋白 AQP1 表达和转水功能中的重要性[J]. 科学通报, 2007, 52(4): 426-431.]
- [29] Lp Y K, Soh M M L, Chen X L, et al. Molecular characterization of branchial aquaporin 1aa and effects of seawater acclimation, emersion or ammonia exposure on its mrna expression in the gills, gut, kidney and skin of the freshwater climbing perch, *Anabas testudineus*[J]. PLoS ONE, 2013, 8(4): e61163.
- [30] Martínez A S, Cutler C P, Wilson G D, et al. Regulation of expression of two aquaporin homologs in the intestine of the European eel: effects of seawater acclimation and cortisol treatment[J]. Am J Physiol Regul Integr Comp Physiol, 2005, 288(6): R1733–R1743.
- [31] Evans D H, Piermarini P M, Choe K P. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste[J]. Physiol Rev, 2005, 85(1): 97–177.
- [32] Laverty G, Skadhauge E. Adaptation of teleosts to very high salinity[J]. Comp Biochem Physiol A, 2012, 163(1): 1–6.
- [33] Hill W G, Mathai J C, Gensure R H, et al. Permeabilities of teleost and elasmobranch gill apical membranes: evidence that lipid bilayers alone do not account for barrier function[J]. Am J Physiol Cell Physiol, 2004, 287(1): C235–C242.
- [34] Choe K P, Evans D H. Compensation for hypercapnia by a euryhaline elasmobranch: Effect of salinity and roles of gills and kidneys in fresh water[J]. J Exp Zool A, 2003, 297A(1): 52–63.
- [35] Collie N L, Bern H A. Changes in intestinal fluid transport associated with smoltification and seawater adaptation in coho salmon, *Oncorhynchus kisutch* (Walbaum)[J]. J Fish Biol, 1982, 21(3): 337–348.
- [36] Genz J, Taylor J R, Grosell M. Effects of salinity on intestinal bicarbonate secretion and compensatory regulation of acid-base balance in *Opsanus beta*[J]. J Exp Biol, 2008,

211(14): 2327-2335.

- [37] Sardella B A, Matey V, Cooper J, et al. Physiological, biochemical and morphological indicators of osmoregulatory stress in 'California' Mozambique tilapia (*Oreochromis* mossambicus × O. urolepis hornorum) exposed to hypersaline water[J]. J Exp Biol, 2004, 207(8): 1399–1413.
- [38] Grosell M. Intestinal anion exchange in marine fish osmoregulation[J]. J Exp Biol, 2006, 209(15): 2813–2827.
- [39] Whittamore J M, Cooper C A, Wilson R W. HCO₃⁻ secretion and CaCO₃ precipitation play major roles in intestinal water absorption in marine teleost fish in vivo[J]. Am J Physiol, 2010, 298(4): R877–R886.

Molecular cloning and expression analysis of aquaporin-1 from the *Coilia nasus* under high-salinity conditions

WANG Meiyao^{1, 2}, YANG Jian^{1, 2}, XU Pao^{1, 2}, XU Gangchun^{1, 2}, XU Dongpo², YOU Yang², LIU Kai², DUAN Jinrong², ZHOU Yanfeng², FANG Di'an², ZHANG Minying², YU Zhenfei²

1. Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;

 Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China

Abstract: The *Coilia nasus* is a commercially important anadromous species distributed mainly in the Yangtze River of China and in coastal waters of China, Korea and Japan. The species is popularly known locally as one of the three most delicious fishes in the Yangtze River, along with the obscure pufferfish Takifugu fasciatus and Reeves shad *Tenualosa reevesii*; additionally, *Coilia nasus* is the main source of income for many Yangtze River fishermen. Coilia nasus migrates to sea for growth and so experiences a wide range of salinities, making osmoregulation especially important for the species during this migration. The protein aquaporin-1 (AQP1), a member of the aquaporin family of integral membrane proteins, functions in transporting water as well as ammonia, urea and glycerin. Accordingly, it is important for hypertonic and hypotonic regulation and maintaining osmotic homeostasis in an organism. To investigate the osmoregulatory role of AQP1 in Coilia nasus, we used rapid amplification of complementary DNA (cDNA) ends (RACE method) to clone, for the first time, aquaporin-1 from this species. The full-length cDNA covered 1 299 base pairs (bp) with a 777 bp open reading-frame (ORF) within the 5' untranslated region (UTR) of 107 bp and the 3'UTR of 458 bp. The ORF encoded 258 amino acids, with a calculated molecular mass of 27.1 kDa, and theoretical isoelectric point of pH 6.13. The results show that AQP1 of Coilia nasus possesses typical conserved domains of the AQP family, including six transmembrane helices and two NPA (Asn-Pro-Ala) motifs, and one binding site for mercury (II) chloride (HgCl₂), which is an AQP1 inhibitor. Next, we analyzed the homology and phylogenetic systematics of the AQP1 sequence from *Coilia nasus*. The highest homology and similarity (reaching 93%) occurred between the AQP1 of Coilia nasus and the AQP1 of Atlantic herring Clupea harengus. The AQP1 of Coilia nasus displayed an evolutionary relationship the furthest from AQP1 of mammals. We performed real-time quantitative PCR (qPCR) to study the expression of AQP1 in various tissues of Coilia nasus, namely gill, brain, mid-kidney, anterior intestine, posterior intestine, spleen, liver, heart and muscle. The results showed that it expressed in many of the tissues (including gill, mid-kidney, anterior intestine, posterior intestine, liver and muscle), but the level of expression was highest in the brain. Lastly, we performed a high-salinity stress test to discover the osmoregulatory function of AQP1 in Coilia nasus under conditions of hypertonic stress. The expression of AQP1 in gill, mid-kidney, anterior intestine, and posterior intestine significantly differed from that in tissues of the controls (P < 0.05). These results demonstrate that AQP1 indeed plays an important role in osmoregulation in Coilia nasus, and the study provides a theoretical reference for further research on the metabolic costs of osmoregulation in Coilia nasus.

Key words: Coilia nasus; aquaporin-1; gene clone; salinity; expression pattern

Corresponding author: XU Pao. E-mail: xup@ffrc.cn

YANG Jian. E-mail: jiany@ffrc.cn