文章编号:1000-0615(2018)01-0018-11

DOI: 10.11964/jfc.20170110699

淇河鲫甘露糖受体基因克隆及嗜水气单胞菌感染 对其基因表达的影响

王俊丽¹, 闫 潇², 卢荣华^{2,3}, 秦超彬², 梁丽娜¹, 刘燕琴¹, 聂国兴^{2,3*}
(1.河南师范大学生命科学学院,河南新乡 453007;
2.河南师范大学水产学院,河南新乡 453007;
3.河南省水产动物养殖工程技术研究中心,河南新乡 453007)

摘要:为了解淇河鲫甘露糖受体(mannose receptor, MR)的结构特点及其在抗感染免疫反应中的作用,实验通过同源克隆和RACE技术,获得了淇河鲫甘露糖受体(CaMR)全长 cDNA,并采用实时荧光定量PCR(qPCR)技术研究了嗜水气单胞菌感染对CaMR组织表达的影响。结果显示,CaMR cDNA全长4473 bp,5'非编码区81 bp,3'非编码区90 bp,编码一个由1433 aa组成的前体蛋白,其中前20 aa为信号肽。CaMR的氨基酸序列和分子结构与其他物种高度相似:胞外一个富含半胱氨酸的结构域(CRD)、一个纤连蛋白II型结构域(FNIID)及8个串连的C型凝集素样结构域(CTLDs),一个跨膜区和一个很短的胞内区。氨基酸同源性和进化分析显示,CaMR与草鱼、团头鲂、斑马鱼等鲤科鱼类的进化关系较近,与草鱼MR的同源性最高(82.4%)。通过qPCR检测到头肾、脾、心脏、肌肉等10种组织中均有表达,其中头肾表达量最高;嗜水气单胞菌感染后,头肾、脾和心脏MR基因的相对表达量均呈先升后降的趋势,而肠道则呈下降趋势,肌肉的表达量变化不显著。本研究为进一步揭示CaMR在免疫反应中的作用机制及其在淇河鲫疾病防治中的应用奠定了基础。

关键词: 淇河鲫; 嗜水气单胞菌; 甘露糖受体; 基因克隆; 基因表达中图分类号: Q 785; S 917.4 文献标志码: A

甘露糖受体(mannose receptor, MR),又称 CD206,是C型凝集素受体家族甘露糖受体亚家 族的一员,20世纪80年代在兔巨噬细胞中首次 发现^[1]。目前的研究多集中在人和哺乳动物,广 泛分布于哺乳动物的巨噬细胞、树突状细胞和 各种内皮细胞,通过介导细胞内吞和噬菌作用 在维持机体内环境稳定和病原体识别方面起重 要作用^[2]。MR属于模式识别受体,可识别包括 细菌、真菌、病毒及寄生虫等多种病原体表面 的多糖成分,不仅是参与固有免疫的重要因子, 还能根据所结合的配体调节适应性免疫反应的 方向(即Th1型或Th2型)^[3-4]。成熟的MR为一细长 的不对称单体分子,分子结构包括一个较长的 胞外区、一个跨膜区和一个较短的胞内区^[5]。胞 外区含有三个结构域:一个N末端富含半胱氨酸 的结构域(cysteine-rich domain, CRD),一个纤连 蛋白II型结构域(fibronectin type II domain, FNIID)和8个串连的C型凝集素样结构域(C-type

lectin domain, CTLD)_o

对鱼类MR的研究远远落后于人和哺乳动

收稿日期: 2017-01-24 修回日期: 2017-05-28

资助项目:国家自然科学基金(31372545);河南省高校科技创新团队支持计划(14IRTSTHN013);河南省自然科学基金 (162300410165);河南省科技计划基金项目(142300410159);河南省教育厅科学技术重点研究项目(14A180007)

通信作者: 聂国兴, E-mail: niegx@htu.cn

19

物。虽然Fritzvold等^[6]在20世纪80年代就已报道 虹鳟的肝脏可能表达MR,但真正的深入研究只 是最近几年才开始。目前已成功克隆的鱼MR 基因主要有: 草鱼(Ctenopharyngodon idella)^[7]、 团头鲂(Megalobrama amblycephala)^[8]、斑马鱼 (Danio rerio)^[9]、大黄鱼(Larimichthys crocea)^[10]、 大菱鲆(Scophthalmus maximus)^[11]等。另有几种鱼 的MR基因序列是根据基因组全序列预测的,如 斑点叉尾鲖(Ictalures punctatus)、青鳉(Orvzias latipes)、大口黑鲈(Macropterus salmoides)、尼罗罗 非鱼(Oreochromis niloticus)等。就现有的研究结 果来看, 鱼类MR与人和哺乳动物MR在结构和功 能上基本一致。淇河鲫(Carassius auratus var. Qihe)是豫北地区独有的名贵经济鱼种,近年来 随着集约化养殖规模的不断扩大,鱼体的抗病 能力降低, 传染病的大规模爆发时有发生, 尤 其是嗜水气单胞菌(Aeromonas hydrophila)感染引 起的细菌性败血症,是造成养殖户经济损失的 重要病原。开展对淇河鲫抗感染免疫反应的研 究,对控制传染病的发生有一定的指导意义。 本实验采用同源克隆和RACE法获得了淇河鲫 MR基因的cDNA全长,对其蛋白结构进行了功能 域分析,并对感染嗜水气单胞菌后的基因表达 规律进行了研究,为进一步探讨淇河鲫甘露糖 受体(CaMR)的功能及其在淇河鲫抗病中的应用 奠定了基础。

1 材料与方法

1.1 材料和试剂

健康淇河鲫由河南师范大学水产养殖基地 提供;鱼源性嗜水气单胞菌菌株XDMG(保藏 号:CCTCC No. M2013566)由新乡医学院复杂疾 病与合成生物学研究所提供;大肠杆菌JM-109由 本实验室保存;pGEM-T质粒购自Promega。

RNAiso Plus、PrimeScript[™]1st Strand cDNA Synthesis Kit、Premix Taq[®] Version 2.0、T4 DNA ligase、Terminal Deoxynucleotidyl Transferase (TdT)、dATP、DL1 000、DL2 000、PrimeScript RT Kit (Perfect Real Time)和SYBR[®] Premix Ex Taq[™] (Tli RNase Plus)为TaKaRa产品;DNA Fragment Quick Purification/Recover Kit购自鼎国昌盛 生物技术有限公司;DEPC、Agarose等购自 Sigma; 其他试剂均为进口分装或国产分析纯。

1.2 RNA提取和基因克隆

RNA提取 无菌条件下取头肾和脾脏, 液氮速冻后研成粉状,Trizol法提取总RNA。超 微量分光光度计(NanoDrop 2000, Thermo)和1%琼 脂糖凝胶电泳检测RNA样品的纯度和完整性。

第一链cDNA合成 分别以提取的头肾和 脾脏总RNA为模板,按照PrimeScript 1st Strand cDNA SynthesisKit说明书反转录合成第一链 cDNA (总RNA加样量为500 ng),作为中间片断克 隆的模板;用引物Q_T代替Oligo dT Primer合成 3'RACE的第一链cDNA;用引物Olig (T)-Adaptor 代替Oligo dT Primer合成5'RACE的第一链 cDNA。

中间片断的克隆 根据已报道的鱼类 MR的保守序列,设计引物,扩增*CaMR*基因的 cDNA片断。由于*MR*基因较大,很难通过一次 PCR扩增获得cDNA全长,所以共设计了4对引物 (表1)。PCR反应程序(T100 Thermal Cycler PCR仪, Bio-Rad):预变性95°C 3 min;94°C 30 s,58°C 30 s,72°C 30 s,共33个循环;72°C延伸10 min。 PCR产物经1%琼脂糖凝胶电泳后,用DNA Fragment Quick Purification/Recorver Kit纯化,并连接 到pGEM-T载体。连接产物转染JM109感受态细 胞,筛选阳性克隆进行测序[英潍捷基(上海)贸易 有限公司]。利用DNAStar SeqMan II 软件将4对引 物的扩增产物进行序列拼接。

cDNA末端扩增 根据获得的CaMR cDNA中间序列,设计5'RACE和3'RACE特异性 引物(表1)。RACE反应条件均为:95°C3min; 94°C30s,60°C40s,72°C30s,共35个循 环;72°C延伸10min。对产物分别进行纯化、连 接、转染、筛选、测序,并与中间序列进行拼接。

1.3 分子特征和进化分析

根据克隆所得的CaMR cDNA全序列,采用 BLASTn程序(http://www.ncbi.nlm.nih.gov/)进行序 列同源性比对,ExPASy分析系统(http://www. expasy.org/)预测氨基酸序列,SignlP 4.0(http://www. cbs.dtu.dk/services/SignalP/)在线预测信号肽; SMART (http://smart.embl-heidelberg.de/)在线预测 蛋白结构;DNAMAN软件比较与其他脊椎动物 的氨基酸序列同源性;MEGA5.0软件构建Neigh-

表1 实验所用的主要引物

Tab. 1 Primers used in this study

引物	序列(5'-3')	用途
primer	primer sequence	usage
MR F1	TCAAACTGCTTTGCACARTCAGGAG	中间片断扩增
MR R1	CCATTGCTCCACTGCCATCCACT	中间片断扩增
MR F2	CTGACATGGTACCAGGCTAGAA	中间片断扩增
MR R2	CTTTCCTCACTGTTTTTAAAGGC	中间片断扩增
MR F3	TTTCAAGCTTGGGAAGCAAATCA	中间片断扩增
MR R3	CACTGTTGAGACCAATCCACAT	中间片断扩增
MR F4	TGCAGTCGTGATRTTGATCC	中间片断扩增
MR R4	ATCAATGTTTTATCATCTTTACTAT	中间片断扩增
Olig (T)- Adaptor (5')	GAC TCG AGT CGA CAT CGA (T) ₁₇	5′末端扩增
Adaptor	GAC TCG AGT CGA CAT CGA	5′末端扩增
MR R5	AGCGAAACTGTTGTGGGTTACTGTG	5′末端扩增
MR R6	GCCCACTGTTTTACTTCCTACTCCA	5′末端扩增
Q _T	CCA GTG AGC AGA GTG ACG AGG ACT CGA GCT CAA GC $(\mathrm{T})_{17}$	3′末端扩增
Q0	CCA GTG AGC AGA GTG ACG	3′末端扩增
Q1	GAG GAC TCG AGC TCA AGC	3′末端扩增
MR F5	CAATAAGGGTTTGGCTGTGTTC	3′末端扩增
MR F6	AGATTGCTGAATAGAACCCTGT	3′末端扩增
MR F7	CATCTCAAGGACTCTGGGAAAC	荧光定量
MR R7	CCTCCTTTAGGCTGTTGTGTAG	荧光定量
β-actin F	CATTGACTCAGGATGCGGAAACT	内参引物
β-actin R	CTGTGAGGGCAGAGTGGTAGACG	内参引物

bor-Joining系统进化树(表2)。

1.4 CaMR基因的组织表达

qPCR法检测CaMR在不同组织的相对表达 量。根据克隆所得的cDNA序列设计荧光定量引 物,内参引物来自鲫β-actin (GenBank登录号: AB039726)(表1)。5条健康淇河鲫(约250g),无菌 条件下分别取心脏、肝脏、鳃、鳍、肌肉、头 肾、脾脏、前肠。提取总RNA,利用PrimeScript RT reagent Kit (Perfect Real-time)反转录获得 cDNA。qPCR (LightCycler[®] 96实时荧光定量 PCR仪, Roche)反应条件: 95 °C 30 s; 95 °C 5 s、 60 °C 30 s,共40个循环。每个样品3个平行孔, 熔解曲线法分析产物的特异性,2-ΔΔ*C*法计算 基因相对表达量。

.

1.5 嗜水气单胞菌感染后CaMR的组织表达

感染实验在河南师范大学水产养殖基地循 环养殖系统内进行。放养前将养殖桶用适当浓 度的高锰酸钾溶液浸泡一周,然后清水反复冲 洗。60尾体质量为(34±1.5)g的淇河鲫,随机分为 2组,分别放养于准备好的实验桶内。训养一周 后正式实验。训养和正式实验期间禁食,水温 控制在28℃左右,充气供氧。

嗜水气单胞菌接种于普通LB液体培养基, 200 r/min、28 °C培养12 h, 0.65%的无菌生理盐 水稀释至1.0×10⁵ CFU/mL(半数致死量为5×10⁵ CFU/ mL)。按鱼体质量5 μL/g腹腔注射,实验组注射 菌液,对照组注射0.65%的无菌生理盐水。注射后 3、10、24 (1 d)、48 (2 d)、96 (4 d)、148 h (7 d), 取头肾、脾脏、心脏、肌肉、肠道等组织,每

表 2 MRs序列同源性和系统进化分析 所用物种的序列登录号

Tab. 2 Species accession NO. of MRs used in the

homologous and phylogenetic analysis

物种	登录号	
species	GenBank accession NO.	
人	NP_002429.1	
Homo sapiens		
猕猴	NP_001180854.1	
Macaca mulatta		
绵羊	NP_001184109.1	
Ovis aries		
野猪	NP_001242898.1	
Sus scrofa		
小鼠	NP_032651.2	
Mus musculus 担空自	NID 001000502.2	
	NP_001099393.2	
Kallus norvegicus 太公初前曲折	XB 020662304 1	
Pogona vitticens	AI_020002304.1	
冠小嘴乌鸦	XP 0103975492	
Corvus cornix	11 _01000 10 10.2	
原鸡	NP 001305936.1	
Gallus gallus		
斑尾鸽	OPJ81763.1	
Columba fasciatu		
高山蛙	XP_018419752.1	
Nanorana parkeri		
非洲爪蟾	XP_012821081.1	
Xenopus tropicalis		
大弹涂鱼	XP_020791311.1	
Boleophthalmus pectinirostris		
土线 鳉	SBP15710.1	
Aphyosemion striatum	XD 004001251 0	
育	XP_004081351.2	
Oryzias lanpes 回氏陰乳鱼	VD 020502171 1	
贝氏隆天世 Labrus barmulta	XI_020505171.1	
王山orus bergynu 壬齿帕	CBN82067 1	
Dicentrarchus labrax	CBR02007.1	
大黄鱼	KKF18663 1	
Larimichthys crocea		
黄鳝	XP 020447068.1	
Monopterus albus	_	
黄颡	AOE43613.1	
Pelteobagrus fulvidraco		
斑马鱼	NP_001297773.1	
Danio rerio		
淇河鲫	ALS87701.1	
Carassius auratus		
早鱼	AIE15913.1	
Ctenopharyngodon idella	A CNI52245 1	
	AGN32245.1	
медаюогата атбіусернага		

个时间点每组随机取4条鱼。注射前每组随机取 4条鱼的组织作为注射前的对照(0 h)。分离的组 织用液氮速冻后-80°C保存。RNA提取、 cDNA合成、qPCR条件及结果计算方法同上。

1.6 数据处理

采用SPSS 13.0 对数据进行单因素方差分析 (One-Way ANOVA),并进行LSD与Duncan氏多重 比较,结果以平均值±标准差(mean±SD)表示, P<0.05认定为有显著性差异。

2 结果

2.1 CaMR全长cDNA序列及分子特征

CaMR cDNA全长4473 bp(GenBank登录号: KT280062), 其中开放阅读框4302 bp, 5'非编码 区81 bp, 3'非编码区90 bp。开放阅读框编码一 条1433个氨基酸(aa)组成的多肽,前20 aa为信号 肽。成熟的CaMR分子为一重跨膜蛋白(图1)。胞 外(氨基端)由1370个aa组成,跨膜区位于 1371~1393 aa处, 胞内尾巴很短(1394~1433 aa)。 胞外区的功能域依次为:1个富含半胱氨酸的结 构域(CRD: 26~157 aa)、1个纤连蛋白II型结构域 (FNIID: 1586~205 aa)和8个串连的C型凝集素样 结构域(CTLD1: 2276~335; CTLD2: 3616~476; CTLD3: 5046~617; CTLD4: 6486~765; CTLD5: 7866~906; CTLD6: 9376~1064; CTLD7: 10896~1196; CTLD8: 12296~1348 aa)_o CRD含有6个保守的半胱氨酸,缺乏与硫酸化半 乳糖结合的N-N-SGLW结构^[12]; FNIID有4个保守 的半胱氨酸,缺乏与胶原蛋白结合的GR-DGW基 序^[13]; CTLD4内有两个碳水化合物识别位点: EPN(Glu⁷²⁶-Pro⁷²⁷-Asn⁷²⁸)和WND(Trp⁷⁵⁰-Asn⁷⁵¹-Asp⁷⁵²), 以及两个Ca²⁺结合位点: Asn⁷²⁹-Asn⁷³²-Glu⁷³⁸-Asn⁷⁵⁴和Glu⁷²⁶-Asn⁷²⁸-Asn⁷⁵¹-Asp⁷⁵²。胞质区有 两个与内吞有关的结构: F¹⁴⁰⁴-N¹⁴⁰⁶-Y¹⁴⁰⁹和L¹⁴²⁴-I¹⁴²⁵。

2.2 CaMR系统进化分析

基于多重序列比对的系统进化分析表明(图2): MR基因进化树形成了哺乳类、爬行类、鸟类、 两栖类和硬骨鱼类5个分枝。在该进化树中, CaMR与鲤科鱼类的草鱼、团头鲂和斑马鱼聚为 一支。从氨基酸序列的同源性来看,CaMR也是 与鲤科鱼的同源性最高,如与草鱼的同源性达 82.4%,与斑马鱼为74.8%,与团头鲂为80.9%, 而与其他科鱼类的相似度比较低,如与鲈科鱼 类的舌齿鲈(Dicentrarchus labrax)相似度只有 47.7%。

2.3 CaMR基因的组织表达

*CaMR*基因在健康淇河鲫心脏、肝脏、鳃、 鳍、肌肉、头肾、脾脏、前肠、中肠、后肠组 织中均有表达,头肾中表达量显著高于其他组 1

82

(5'-UTR) GAGATTGCAGAATCTCAGCCAGTGACAGAGGATGCCCCTGGAATGAACCTAGGAACAGCACAAAATATATTTTGGATCAAG

1 <u>M K I V V T V V I L L I L H L S N C F A</u> Q S G S F L I Y N V D 178 33 Y N K C M S S S L E R L S T C D P H S N P Q Q F R W A S K N R I 65 L N T F T K K C L G V G S K T V G K K L Q W L I C E D D N D L Q 370 97 NWECHSDTLLGLKNESLFLAVNDNGVPVISKD 466 actggaacgaaggagcaattggacaattcatggaacactaaacaacatttgctctaagccttatgaagaattgtacaccattgatggaaatgcattt129 T G T K S K W T I H G T L N N I C S K P Y E E L Y T I D G N A F 562 ggtcgcccatgtcagtttccttttctttatgagaaaaaatggtatgcagattgtaccaaaactgatgaacaaaatcaacgtctatggtgttctgtt161 G R P C Q F P F L Y E K K W Y A D C T K T D E Q N Q R L W C S V 658 gagacagactacagtgttaatcagctgtggggctactgcccaacacgtgacaatacattctgggccaaacatcctctgacaaacgtctattaccaa193 E T D Y S V N Q L W G Y C P T R D N T F W A K H P L T N V Y Y Q 754 gtgaatagtgggtcagccctgacatggtaccaggctagaaagagctgccagcagcagagcagagctgctgagtgtctctgaacctcacgaacac225 V N S G S A L T W Y Q A R K S C Q Q Q G A E L L S V S E P H E H 257 T F V A G I V O S T S N A L W T G L N K L D V T S G W O W S N A $946 \quad {\tt cagccattacgttatctgaaatggctcagtggatacccaaccaccaccagctacagttgtggagtcctgaaaaatgcttttggttctgaatgg}$ 289 Q P L R Y L K W L S G Y P T T Q P G Y S C G V L K N A F G S E W $1042\ {\tt tcaaatgaaccttgttctgaaaaacatggatatgtctgccaaagaggccattctgttcctattgttccaccagtggtggacactggcttttgccat}$ 321 SNEPCSEKHGYVCQRGHSVPIVPPVVDTGFCH 353 S P W I P Y S S N C Y L L H R T K K T W L E A R D S C L R E G G 385 D L L S I L S K E E Q S F V I T Q L G Y S K T D E L W I G F N D 417 RKTQMLFEWSDQSSVPFASWEVSEPSHSAVRA $1426\ {\tt gaggactgcgtgttaatgagaggaggagggaaagtgggctgatgatatttgtgaaaataagtatggattcatctgtaagaagaagtccagctcc$ 449 EDCVLMRGEEGKWADDICENKYGFICKKKSSS $1522 \ \texttt{agagectcaataatgatacagttgtcacaagecccggatgcaaaacaggttggaccaggtatgggtactactgctacatggccggacctggtcc}$ 481 R A S N N D T V V T S P G C K T G W T R Y G Y Y C Y M A G P E S $1618\ aagacctttgaagaagcaaaacagatgtgtgaaaaagctgattetcaactggttgatattteatecagaatagaaaatgcatteetegttagtgta$ 513 KTFEEAKQMCEKADSQLVDISSRIENAFLVSV $1714\ {\tt gttggagcaccgaccagagaagtatttctggattggttgtctaatcagaaggatccgcacacttttgaatggaccaacactaagaaagtctcattt$ 545 VGARPEKYFWIGLSNQKDPHTFEWTNTKKVSF $1810\ \texttt{act} cattcaacgctgggatgccaggaagaaaacaaggctgtgttgccatgacgactggaattgttgctgggctttgggatgtgatcagctgctca$ 577 THFNAGMPGRKQGCVAMTTGIVAGLWDVISCS 609 N K E K Y I C K Q K A D G L V T T P A P P T T P A I S C P E E W 641 TPLVSRDFCVKHFDVPMSQMKTWDEALDFCQE $2098\ {\tt cttggtggtgatctcctgagcatccatcatgaggctgatattccttggaaacaaggaggagtgtatccagcatggattggttacagaatgtacgat$ 673 LGGDLLSIHHEADIPWKQGGVYPAWIGYRMYD 705 PSVGFVWSDGFSSSFQSWASD 🔟 P 🚳 🛇 LN 🛇 I EN C 737 V 🗊 M R I S I W D S D G A W 🚳 🔟 V 🚳 C Q D R K D W F C Q I R K G 2386 aagataccaaaggaagtaaatattacaggtcaagtttataatgaaacagaggatggttggatactattccgaggtagccagtactatgtgtcccag 769 K I P K E V N I T G Q V Y N E T E D G W I L F R G S Q Y Y V S Q 801 Y T S L S M H D A R T F C R K S H A D L V V I N D E A E R V F I $2578 \ {\tt tggcatcaggctaggattggactggattggactggattg$ 833 WHQAKNSHNEFTIGLTVDLDGSYQWMDGSPVV $2674\ {\tt tttcaagcttgggaagcaaatcagcctgcttttaaaaacagtgaggaaagatgtgtgaagatgaccacatctcaaggactctgggaaactattaac$ 865 FQAWEANQPAFKNSEERCVKMTTSQGLWETIN

(图 1 Fig. 1)

http://www.scxuebao.cn

2770 tgtggagatgaatataattttttttgtaagcgaagtgggtcacctacagtaaacaccacagtggcccctacacaacagcctaaaggaggctgtgct 897 CGDEYNFFCKRSGSPTVNTTVAPTQQPKGGCA 929 PEWKHFKGKCYNVKEELKTWTEARGYCRELGG 961 D L A S I L N K Q Q Q A F L S T I I R E K T T D L W I G F S N L $3058\ gcaaatgggatgttcaagtggacagatgggagtaatgttcaattcaccgagtgggccaaaggggaacctcaaaactattggcattcatactattgg$ 993 A N G M F K W T D G S N V Q F T E W A K G E P Q N Y W H S Y Y W 1025 TKYHHSDEQECVEMGKGSSSEEGKWVATDCNS 3250 act cacggttttatctgcagtcgtgatgttgatcctggtattgccccagtgccgactggaattcctaaaacctttgtcaagcttggaaattcatct1057 THGFICSRDVDPGIAPVPTGIPKTFVKLGNSS $3346\ {\tt t} {\tt c} aaagtgattcaagagaacctaacgtggagtgaagcaaaccgtcgctgtgaggcagagggggctcatctggccagcattcgggatttgataaca$ 1089 F K V I Q E N L T W S E A N R R C E A E G A H L A S I R D L I T 1121 QAYLELQVYRAKQPMWIGLSSVQTNGYFLWAN 3538 aactggcccatgaatatggagaaatgggcatcttctgaaccacggcccaaccgcccttgtgcatacatggacacagacggagaatggaaaacaact 1153 NWPMNMEKWASSEPRPNRPCAYMDTDGEWKTT $3634\ {\tt ctctgcaatcaaacctactacagtgtctgtgagcaaacaacagatattcccccgactgttccaccacagcatcctgggcactgcccccaagaagat}$ 1185 L C N O T Y Y S V C E O T T D T P P T V P P O H P G H C P O E D $3730 \ {\tt gatgacagtccagtaagtggataccttacaaagacagttgctatgcttttgtgatggaactgaaatcatggagcagagcatctagactgtatg}$ 1217 D D S P V R W I P Y K D S C Y A F V M E L K S W S R A S R L C M 3826 acatggggagcatctcttgtcagcatcagggatgaagaggaacagaagtttatagagaacaacgtcatgctcatggaaagtttcaaaaacttttgg 1249 TWGASLVSIRDEEEQKFIENNVMLMESFKNFW 1281 I G L F O T O K G H W L W S D N T V V D Y T N W A T G N D Y D D $4018\ {\tt gaccatggatttcataactggaatcttgaatgcgcattactctcttccaaaacaaaaaatggagacaaaaacattgtgattactcttccttatca$ 1313 DHGFHNWNLECALLSSKTKKWRQKHCDYSSLS 4114 tttatctgcaaaactgccaaagttataagtacaaccactaagtccacagaagaaggtcctgagcctcacaaggtcaataagggtttggctgtgttc 1345 FICKTAKVISTTTKSTEEGPEPHKVN<u>KGLAVF</u> 1377 FTIAVVSILGALAFMYY RSSKRKLLPT 🖪 E N РМ $4306\ {\tt tataataacagagatgctgcttattcagatagtaaagatgataaaacattgatgccaacattgagattgctgaatag}$ 1409 Y NNRDAAYSDSKDDKT 🛛 I ANIEIAE*

图 1 CaMR的cDNA序列及预测的氨基酸序列

矩形框内序列为跨膜区;单下划线区序列为信号肽;双下划线为CTLD4内的2个糖结合位点;带有灰色阴影的氨基酸是CRD区的6个保守半胱氨酸残基;带有棕色阴影的氨基酸是FIIND内的4个保守半胱氨酸残基;圆,⑩,⑩,为Ca²⁺结合位点1(Glu⁷²⁶-Asn⁷²⁸-Asn⁷⁵¹-Asp⁷⁵²);⑩,⑩,⑩,⑩,⑦为Ca²⁺结合位点2(Asn⁷²⁹-Asn⁷³²-Glu⁷³⁸-Asn⁷⁵⁴);圖,圖,圖和圖,圖为胞质内2个潜在的内吞基序(Phe¹⁴⁰⁴-Asn¹⁴⁰⁶-Tyr¹⁴⁰⁹和Leu¹⁴²⁵-Ile¹⁴²⁶)

Fig. 1 Sequence of CaMR cDNA and predicted precursor polypeptide

织,脾次之,鳍中的表达量最低(图3)。

2.4 嗜水气单胞菌感染后CaMR基因的组织表达

腹腔注射嗜水气单胞菌对淇河鲫不同器官的MR基因表达具有不同的影响:显著上调头肾和脾脏的MR基因表达,而对肠道MR基因的表达显著下调,对心脏MR的表达先是显著上调然后

显著下调,对肌肉的影响不明显(图4)。头肾 MR基因表达量在3h时即显著升高,10h时达到 峰值,之后虽显著下降,但直到第7天,仍显著 高于注射前(0h)的水平;在脾脏,表达量在3 h即显著升高并达到峰值,10h时有所下降,但 仍显著高于0h,之后降至注射前的水平;心脏 的表达量也是在3h时显著升高并达到峰值,但

23

图 2 脊椎动物MRs分子系统进化分析

用MEGA 5.0软件中的Neighbor-Joining构建,各物种MR的GenBank登录号见表2

Fig. 2 Phylogenetic tree of MRs from vertebrates

The tree was constructed using the neighbor-joining method within the MEGA 5.0 program. The GenBank accession number of MR genes were shown in Table 2

之后大幅下降并显著低于0h; 肠道的表达量在3 h时显著下降,4d时虽有所回升,但始终显著低 于0h。从以上结果可以看出,除肌肉外,淇河 鲫各组织MR对嗜水气单胞菌感染的反应非常迅 速,均在3h时即显著发生变化,说明MR是淇河 鲫参与细菌感染免疫反应的早期因子。从各器 官的相对表达量来看,头肾在感染后的升高幅 度最大,且始终显著高于感染前,说明头肾 MR在抗感染免疫反应中起主要作用。注射生理 盐水也可影响淇河鲫各组织MR的表达,除头肾 和心脏表达量的变化没有感染组显著外,其表 达模式与细菌感染基本一致(图4)。

3 讨论

本实验成功克隆出淇河鲫甘露糖受体(CaMR) 的全长cDNA,并预测其编码一个1433aa的前体 蛋白。从氨基酸序列和分子结构来看, CaMR与 其他物种高度一致,具有甘露糖受体的典型特 征: 成熟蛋白分子为一重跨膜蛋白, 分为胞外 区、跨膜区和胞内区。胞外区分为3个功能域: 1个富含半胱氨酸的结构域(CRD)、1个纤连蛋白 II型结构域(FNIID)和8个串连的C型凝集素样结构 域(CTLDs)。关于MR结构与功能的关系,在哺乳 动物中已得到阐明: MR可通过其胞外复杂的结 构域特异性结合内源和外源的多种配体,从而 在病原识别、内环境稳定及肿瘤发生发展中起 重要作用^[14]。MR可通过其CRD结合硫酸化的半 乳糖及乙酰半乳糖胺,该结构域中的N⁹⁹-N¹⁰²-S¹¹⁴-G¹¹⁵-L¹¹⁶-W¹¹⁷为配体糖提供主要的结合部位^[12, 15-16]。 FNIID通过其结构中的G33-R34-D36-G37-W38可结合 胶原蛋白,但要将胶原内吞入细胞,则需要 CRD、FNIID、CTLD1和CTLD2的共同参与^[13]。

1期

图 3 CaMR mRNA在不同组织的相对表达量

1. 心脏, 2. 肝脏, 3. 鳃, 4. 鳍, 5. 肌肉, 6. 头肾, 7. 脾脏, 8. 前肠, 9. 中肠, 10. 后肠

图中数据表示为平均值±标准差(mean±SD, n=5),不同字母表示 差异显著(P<0.05)

Fig. 3 The relative abundance of CaMR mRNA in different tissues

1. heart, 2. liver, 3. gill, 4. fin, 5. muscle, 6. head kidney, 7. spleen, 8. foregut, 9. mid-gut, 10. hind-gut

Data were shown as mean \pm SD, *n*=5. Different letters mean statistical differences (*P*<0.05).

MR的CTLDs可结合病源微生物表面分子末端的 甘露糖、岩藻糖和N-乙酰基葡萄糖,从而鉴别 "自己"和"非己"成分,并因此被认为是一种模式 识别受体^[3]。CTLD4是结合配体糖的关键部位, 其结构中的EPN和WND基序提供了配体结合位 点^[17-18]。CTLDs与配体的结合依赖于2个Ca²⁺的参

与,CTLD4序列中的N-N-E-N基序是其中一个 Ca²⁺的结合位点,该基序存在于所有含CTLD结 构域的受体中^[19]。CaMR的CTLD4含有同哺乳动 物一样的糖结合基序及Ca²⁺结合位点,说明 CaMR的CTLD结构域也应具有依赖于Ca²⁺的甘露 糖结合特性。Zhao等^[20]对团头鲂的研究证明 MR介导巨噬细胞对细菌的吞噬为 Ca^{2+} 依赖性, 提示该结构域在不同物种间的功能保守性。与 哺乳动物MR不同的是, CaMR的CRD内缺乏硫酸 化半乳糖结合位点(N-N-SGLW), FNIID内缺乏胶 原蛋白结合基序(GR-DGW)。从对哺乳动物甘露 糖受体家族结构与功能的比较研究来看,该家 族4个成员(分别为MR、uPARAP/Endo180、 PLA₂R和DEC205)除DEC205含有10个CTLD外, 其他结构完全一致,但只有MR的CRD含有N-N-SGLW基序,相应地也只有MR能结合硫酸化糖^[12]; 同样地,因为只有MR和uPARAP/Endo180的 FNIID中含有GR-DGW基序,也只有此二者可结 合胶原蛋白^[13]。因此,相较于哺乳动物MR,淇 河鲫MR可能主要是作为一种模式识别受体,在 病原识别的免疫反应中起重要作用。MR是一种 高效的内吞受体[12],一旦与配体结合,便在网格 蛋白的介导下内吞入细胞的内体系统。在内体 的酸性环境中, MR与配体解离, 并重新返回细 胞膜。一般情况下, MR只有10%~30% 位于膜

图 4 嗜水气单胞菌感染后CaMR mRNA在不同组织的相对表达量

1. 盐水组; 2. 细菌组. 图中数据表示为平均值±标准差(X ± SD, n=4),不同字母表示同一处理组不同时间点相对表达量差异显著(P<0.05)

Fig. 4 The relative abundance of CaMR mRNA in different tissues after being infected with A. hydrophilaa

1. Saline group; 2. infected group. Data were shown as mean \pm SD (n=4). Different letters mean statistical differences at different time in the same group (P<0.05).

上,而70%~90% 在膜内。CaMR胞内区含有2个 类似于哺乳动物MR的内吞和胞内转运相关基 序:F-N-Y和LI,说明CaMR也应有将配体内吞和 进行胞内转运的活性。氨基酸序列同源性比对 和进化分析结果表明,CaMR与草鱼的同源性最 高,其次是斑马鱼和团头鲂。在进化树的聚类 分支中,CaMR与草鱼、斑马鱼、团头鲂等鲤科 鱼类首先聚在一起。这些结果从分子水平证明 了它们同属于鲤科鱼类的进化关系。

目前已鉴定的鱼类MR组成性表达于多种器 官,尤其高表达于头肾和脾脏,如斑马鱼^[9]和团 头鲂在头肾^[8]中的表达量最高;草鱼^[7]和大黄鱼^[10] 在脾和头肾中的表达量均较高。本研究也表 明,在非感染的健康淇河鲫, MR mRNA在多种 器官有组成性表达,其中头肾的表达量最高, 然后是脾,这两个器官的表达量均显著高于其 他器官。头肾和脾是多数鱼类的主要免疫器 官,MR的这种组织表达模式说明它应该是鱼类 的一种重要免疫因子。感染嗜水气单胞菌后淇 河鲫头肾、脾脏、心脏和肠道的MR基因表达均 发生明显变化,其中变化最显著的是头肾,说 明头肾应是淇河鲫的主要免疫器官,同时表明 其他器官在淇河鲫抗细菌感染中也起一定作 用。近年的研究表明,生物体内各器官间存在 免疫对话及其他生理活动的交流,当一个器官 发生某种生理或病理改变时,其他器官会进行 相应的调整,以保证整个机体的稳定与平衡[21]。 因此,头肾以外其他器官MR基因表达的变化可 能是鱼体受到细菌感染后进行的适应性调整。 实验中我们还发现,腹腔注射生理盐水也可引 起淇河鲫各器官MR基因表达的变化,其变化规 律与细菌感染基本一致,只是表达量的变化没 有细菌感染组显著。我们使用的是严格灭菌的 生理盐水,并在灭菌后随时注射,所以不存在 盐水中污染有细菌的可能。注射时因刺伤皮 肤,多数鱼有少量出血现象,但在注射后的养 殖过程中均未发生肉眼可见的外伤感染。因 此,对照组CaMR基因表达的这种变化只能解释 为两个原因:一是注射时刺破皮肤引起的应激 反应; 二是外来的生理盐水可引起固有免疫反 应。另外,我们还观察到,不管是对照组还是 感染组,在注射后各器官CaMR基因的表达多数 在3h即发生显著变化,说明MR是参与淇河鲫免 疫系统清除外来物质的早期免疫因子。

鱼类获得性免疫应答抗体结合效率低下且 反应缓滞,其抗感染免疫反应更多依赖于固有 免疫^[22-23]。MR作为一种模式识别受体,在固有 免疫反应中起重要作用,因此,本实验对淇河 鲫MR基因及其表达的研究,为完善鱼类抗感染 免疫反应机制及加强淇河鲫的疾病防治具有重 要意义。

参考文献:

- [1] Wileman T E, Lennartz M R, Stahl P D. Identification of the macrophage mannose receptor as a 175-kDa membrane protein[J]. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83(8): 2501-2505.
- [2] Gazi U, Martinez-Pomares L. Influence of the mannose receptor in host immune responses[J]. Immunobiology, 2009, 214(7): 554-561.
- [3] Paveley R A, Aynsley S A, Turner J D, *et al.* The mannose receptor (CD206) is an important pattern recognition receptor (PRR) in the detection of the infective state of the helminth *Schistosoma mansoni* and modulates IFNγ production[J]. International Journal for Parasitology, 2011, 41(13-14): 1335-1345.
- [4] Barton G M. A calculated response: Control of inflammation by the innate immune system[J]. The Journal of Clinical Investigation, 2008, 118(2): 413-420.
- [5] Martinez-Pomares L. The mannose receptor[J]. Journal of Leukocyte Biology, 2012, 92(6): 1177-1186.
- [6] Fritzvold R, Dannevig B H, Berg T. The liver parenchymal cells of rainbow trout (*Salmo gairdneri*) endocytose mannose-terminated glycoproteins[J]. Fish Physiology and Biochemistry, 1989, 6(6): 367-375.
- [7] Wang L, Liu L C, Zhou Y, *et al.* Molecular cloning and expression analysis of mannose receptor C type 1 in grass carp (*Ctenopharyngodon idella*)[J]. Developmental & Comparative Immunology, 2014, 43(1): 54-58.
- [8] Liu X L, Tang X C, Wang L, et al. Molecular cloning and expression analysis of mannose receptor in blunt snout bream (*Megalobrama amblycephala*)[J]. Molecular Biology Reports, 2014, 41(7): 4601-4611.
- [9] Zheng F F, Asim M, Lan J F, et al. Molecular cloning and functional characterization of mannose receptor in zebra fish (Danio rerio) during infection with Aeromonas sobria[J]. International Journal of Molecular Sci-

1期

ences, 2015, 16(5): 10997-11012.

- [10] Dong X L, Li J J, He J Y, et al. Anti-infective mannose receptor immune mechanism in large yellow croaker (*Larimichthys crocea*)[J]. Fish & Shellfish Immunology, 2016, 54: 257-265.
- [11] Fontenla F, Noia M, Leiro J M, et al. The turbot macrophage mannose receptor: Phylogenetic analysis, functional characterization and changes in gene expression during vaccination and infection with *Philasterides dicentrarchi*[J]. Fish & Shellfish Immunology, 2016, 53: 121-122.
- East L, Isacke C M. The mannose receptor family[J].
 Biochimica et Biophysica Acta (BBA)-General Subjects, 2002, 1572(2-3): 364-386.
- [13] Jürgensen H J, Johansson K, Madsen D H, et al. Complex determinants in specific members of the mannose receptor family govern collagen endocytosis[J]. The Journal of Biological Chemistry, 2014, 289(11): 7935-7947.
- [14] Allavena P, Chieppa M, Bianchi G, *et al.* Engagement of the mannose receptor by tumoral mucins activates an immune suppressive phenotype in human tumor-associated macrophages[J]. Clinical and Developmental Immunology, 2010, 2010: 547179.
- [15] Liu Y, Chirino A J, Misulovin Z, *et al.* Crystal structure of the cysteine-rich domain of mannose receptor complexed with a sulfated carbohydrate ligand[J]. The Journal of Experimental Medicine, 2000, 191(7): 1105-1116.
- [16] Liu Y, Misulovin Z, Bjorkman P J. The molecular mechanism of sulfated carbohydrate recognition by the cysteine-rich domain of mannose receptor[J]. Journal of Molecular Biology, 2001, 305(3): 481-490.

- [17] Lee R T, Hsu T L, Huang S K, et al. Survey of immunerelated, mannose/fucose-binding C-type lectin receptors reveals widely divergent sugar-binding specificities[J]. Glycobiology, 2011, 21(4): 512-520.
- [18] Soanes K H, Ewart K V, Mattatall N R. Recombinant production and characterization of the carbohydrate recognition domain from Atlantic salmon C-type lectin receptor C (SCLRC)[J]. Protein Expression and Purification, 2008, 59(1): 38-46.
- [19] Mullin N P, Hitchen P G, Taylor M E. Mechanism of Ca²⁺ and monosaccharide binding to a C-type carbohydrate-recognition domain of the macrophage mannose receptor[J]. The Journal of Biological Chemistry, 1997, 272(9): 5668-5681.
- [20] Zhao X H, Liu L C, Hegazy A M, et al. Mannose receptor mediated phagocytosis of bacteria in macrophages of blunt snout bream (*Megalobrama amblycephala*) in a Ca²⁺-dependent manner[J]. Fish & Shellfish Immunology, 2015, 43(2): 357-363.
- [21] Rajan A, Perrimon N. Drosophila as a model for interorgan communication: Lessons from studies on energy homeostasis[J]. Developmental Cell, 2011, 21(1): 29-31.
- [22] Biller-Takahashi J D, Urbinati E C. Fish Immunology. The modificiation and manipulation of the innate immune system: Brazilian studies[J]. Anais da Academia Brasileira de Ciências, 2014, 86(3): 1483-1495.

[23] 谢英,张力,刘树锋.斑马鱼免疫学研究进展[J]. 实验 动物科学, 2013, 30(3): 50-53.
Xie Y, Zhang L, Liu S F. Research progress of Zebrafish immunological properties[J]. Laboratory Animal Science, 2013, 30(3): 50-53(in Chinese).

Molecular cloning of mannose receptor in *Carassius auratus* var. *Qihe* and effects of *Aeromonas hydrophila* infection on its gene expression

WANG Junli¹, YAN Xiao², LU Ronghua^{2,3}, QIN Chaobin², LIANG Lina¹, LIU Yanqin¹, NIE Guoxing^{2,3*}

(1. College of Life Sciences, Henan Normal University, Xinxiang 453007, China;
2. College of Fisheries, Henan Normal University, Xinxiang 453007, China;
3. Engineering Technology Reasearch Center of Henan Province for Aquatic Animal Cultivation, Xinxiang 453007, China)

Abstract: Mannose receptor (MR), a member of the C type lectin receptor superfamily, is thought to be involved in the non-specific immune responses in animals. To illustrate the MR molecular structure of *Carassius auratus* var. *Qihe* (CaMR) and the role it played in anti-infection immunity, homology cloning and RACE techniques were used in the present study to obtain the complete cDNA sequence, and the real-time fluorescent quantitative PCR (qPCR) technique was used to measure the effect of *Aeromonas hydrophila* (*A. hydrophila*) infection on its gene expression. The full-length cDNA of CaMR contains 4473 bp, including 81bp at 5'UTR and 90 bp at 3'UTR. The open reading frame encodes a putative protein of 1433 aa with a signal peptide of 20 aa. The predicted amino acid sequences showed that CaMR contained a cysteine-rich domain (CRD), a single fibronectin type domain (FN II D), eight C-type lectin-like domains (CTLDs), a transmembrane domain and a short C-terminal cytoplasmic domain, sharing highly conserved structures with MRs from the other species. Amino acid sequence homology and phylogenic tree showed the close relationship between CaMR and other cyprinid fishes. The MR mRNA could be detected in all the examined tissues with highest level in headkidney. The temporal expression patterns of MR in the headkidney, spleen, and heart post of infection with A. *hydrophila* first rose and then fell, while in the intestine decreased continually. The current research provides a basis for further revealing the function of CaMR in immune reaction and for its application in disease prevention and treatment of *Carassius auratus* var. *Qihe*.

Key words: Carassius auratus var. Qihe; Aeromonas hydrophila; mannose receptor; gene cloning; gene expression

Corresponding author: NIE Guoxing. E-mail: niegx@htu.cn

Funding projects: National Natural Science Foundation of China (31372545); Program for Innovative Research Team (in Science and Technology) in University of Henan Province (14IRTSTHN013); Natural Science Foundation of Henan Province (162300410165); Science and Technology Plan Project of Henan Province (142300410159); Key Scientific and Technological Project of Henan Education Department (14A180007)