

请通过网上投稿系统投稿 网址:http://www.aes.org.cn

复杂流域氮磷污染物输出特征及模拟——以南京市云台山河流域为例

任智慧, 赵春发, 王青青, 徐蕴韵, 郭加汛, 王腊春

引用本文:

任智慧, 赵春发, 王青青, 等. 复杂流域氮磷污染物输出特征及模拟——以南京市云台山河流域为例[J]. 农业环境科学学报, 2021, 40(1): 174–184.

在线阅读 View online: https://doi.org/10.11654/jaes.2020-0853

您可能感兴趣的其他文章

Articles you may be interested in

基于人为氮净输入及入河系数的流域河流氮输出负荷估算

凡翔, 吴凤平, 孟岑, 叶磊, 李希, 张满意, 李裕元, 吴根义, 吴金水 农业环境科学学报. 2021, 40(1): 185-193 https://doi.org/10.11654/jaes.2020-0762

汉江流域农业面源污染的源解析

唐肖阳, 唐德善, 鲁佳慧, 常文倩, 唐新玥 农业环境科学学报. 2018, 37(10): 2242-2251 https://doi.org/10.11654/jaes.2017-1751

亚热带源头流域梯级池塘氮磷含量的时空变异及其影响因素

申雅莉,周脚根,彭佩钦,吴金水 农业环境科学学报. 2020, 39(10): 2420-2428 https://doi.org/10.11654/jaes.2019-1257

农业面源污染中氮排放时空变化及其健康风险评价研究——以淮河流域为例 宋大平, 左强, 刘本生, 邹国元, 刘东生 农业环境科学学报. 2018, 37(6): 1219–1231 https://doi.org/10.11654/jaes.2017–1374

降雨和施肥对秦岭北麓俞家河水质的影响

郭泽慧, 刘洋, 黄懿梅, 晏江涛, 腾飞, 王永斌 农业环境科学学报. 2017, 36(1): 158-166 https://doi.org/10.11654/jaes.2016-0893

关注微信公众号,获得更多资讯信息

任智慧, 赵春发, 王青青, 等. 复杂流域氮磷污染物输出特征及模拟——以南京市云台山河流域为例[J]. 农业环境科学学报, 2021, [40(1): 174-184.

REN Zhi-hui, ZHAO Chun-fa, WANG Qing-qing, et al. Characteristics and simulation of nitrogen and phosphorus in complex watersheds: A case study in the Yuntaishan River Basin in Nanjing City, China[J]. Journal of Agro-Environment Science, 2021, 40(1): 174–184.

开放科学OSIT

复杂流域氮磷污染物输出特征及模拟 ——以南京市云台山河流域为例

任智慧¹,赵春发²,王青青¹,徐蕴韵¹,郭加汛¹,王腊春^{1*} (1.南京大学地理与海洋科学学院,南京 210023; 2.南京市江宁区水务局,南京 211100)

摘 要:为定量分析复杂流域下垫面氮磷面源污染对流域水环境的影响,研究以南京市云台山河流域为研究对象,结合原位观测,并构建降雨-径流水文模型以及面源污染负荷模型,对云台山河总氮(TN)、总磷(TP)浓度的时空变化特征以及流域不同下垫面TN面源污染产生及入河特征进行分析。水质监测结果表明:云台山河TN平均浓度为5.1 mg·L⁻¹,各河段TN均超IV类水质标准。TP平均浓度为0.14 mg·L⁻¹,仅阳山河支流超IV类水质标准。TN浓度整体表现为下游高于上游,旱季高于雨季。TP浓度空间变化不明显,年内变化缓慢,表现为逐渐下降的趋势。水文模型及面源污染负荷模型对TN的模拟效果较好,模拟结果表明云台山河流域TN年产生量为581.1 t,主要来自农田径流与农村生活源,胜利河片区和主干流片区是TN污染物的主要来源区域。流域TN年入河量为187.8 t,占面源产生量的32%。受土地利用方式及城镇化程度影响,不同片区TN面源污染入河量呈现明显的空间差异性。为达到目标水质,流域TN需削减量为137.3 t·a⁻¹,其中农田径流与农村生活污染需削减量分别为55.5 t·a⁻¹和39.7 t·a⁻¹。研究表明在流域水文资料较缺乏的情况下,结合原位观测与模型构建,可实现流域面源污染物负荷的定量估算。 关键词:复杂流域;氮磷污染;时空分布;污染负荷模拟;输出特征

中图分类号:X52 文献标志码:A 文章编号:1672-2043(2021)01-0174-11 doi:10.11654/jaes.2020-0853

Characteristics and simulation of nitrogen and phosphorus in complex watersheds: A case study in the Yuntaishan River Basin in Nanjing City, China

REN Zhi-hui¹, ZHAO Chun-fa², WANG Qing-qing¹, XU Yun-yun¹, GUO Jia-xun¹, WANG La-chun^{1*}

(1. School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; 2. Water Affairs Bureau of Jiangning District, Nanjing City, Nainjing 211100, China)

Abstract: To quantitatively evaluate the impact of nitrogen and phosphorus from non-point source pollution on the water environment of a complex watershed, the Yuntaishan River Basin in Nanjing City was considered a case study. A rainfall-runoff hydrological model and non-point source pollution load model was constructed in combination with in-situ observations. The temporal and spatial characteristics of the total nitrogen(TN) and total phosphorus(TP) concentration in Yuntaishan River were analyzed, as well as the inflow characteristics of TN non-point source pollution on different underlying surfaces of the basin. The monitoring results showed that the average concentration of TN was 5.1 mg \cdot L⁻¹, exceeding the Grade IV water quality standards. The average concentration of TP was 0.14 mg \cdot L⁻¹, and only the tributary of Yangshan River exceeded the Grade IV water quality standard. The overall TN concentration in the downstream region was higher than that in the upstream region, and higher in the dry season than in the rainy season. The spatial change in TP concentration was

收稿日期:2020-07-22 录用日期:2020-09-27

作者简介:任智慧(1996—),女,湖南岳阳人,硕士研究生,从事水文与水资源研究。E-mail:renzhihui068@163.com

^{*}通信作者: 王腊春 E-mail: wang6312@263.net.cn

基金项目:南京市水务科技项目(201806)

Project supported: The Nanjing City Water Science and Technology Project (201806)

not obvious, with a slow downward trend throughout the year. The hydrological model and non-point source pollution load model had a good simulation effect on TN. The simulation results showed that the annual TN output in the basin was 581.1 t, mainly from farmland runoff and rural living pollution sources. Shengli River and the main stream areas were the key sources of TN pollutants. The annual amount of TN pollutant in the Yuntaishan River basin was 187.8 t, accounting for 32% of non-point source production. Land use and urbanization affected the amount of nitrogen pollutant in the rivers in different areas, showing significant spatial differences. To achieve the target water quality, TN needs to be reduced by 137.3 t \cdot a⁻¹ in the watershed, and farmland runoff/rural pollution needs to be controlled. This study showed that in the absence of hydrological data, the combination of *in-situ* observations and model construction could achieve the quantitative estimation of non-point source pollutant load in a watershed.

Keywords: complex watershed; nitrogen and phosphorus pollution; temporal and spatial distribution; non-point source pollution load simulation; output characteristics

人类活动加剧与城市化进程的加快,使得大量氮 磷等生源要素进入水体,导致水质恶化加剧,产生一 系列的生态环境问题^[1]。随着点源污染的有效控制, 河流水质却并未得到显著改善,面源污染成为水体氮 磷主要来源^[2]。然而短期内很难降低流域面源污染 负荷,流域水质状况也难以有效减缓。因此必须有针 对性地提出控源截污或降低氮磷入河方法,厘清面源 入河份额,做到有的放矢。

面源污染指溶解态或颗粒态的污染物随着降雨、 融雪等径流发生迁移转化,并最终随着径流从不固定 的地点汇入水体,造成的水体污染问题^[3]。在一个复 杂流域中,畜禽养殖、农村生活污水、城镇地表径流、 农业化肥等是面源污染重要来源档。不少学者研究 表明土地利用类型、农作物耕种方式、降水强度等因 素会影响流域面源污染的时空分布特征与最终入河 量15-61。目前,水文水质模型与原位监测是进行流域 面源污染相关研究的主要手段^[7]。结合GIS与RS技 术,以SWAT、HSPF、AnnAGNPS等为代表的模型广泛 应用于流域面源污染特征分析及负荷计算[8-10]。但大 多水文水质模型需要大量的基础数据,在资料缺乏地 区较难适用。此外,原位监测虽在一定程度上可以估 算污染物通量,但较难区分不同面源污染入河特 征^[11]。因此,在资料缺乏且下垫面复杂的流域构建面 源污染负荷模型,实现面源污染入河特征及负荷定量 研究,具有重要的研究意义。

南京市云台山河长期受到农业和城镇面源污染的影响,河流水质不容乐观。因此研究以云台山河流域为研究对象,通过构建降雨-径流水文模型和面源污染负荷模型,结合原位监测结果,分析了河流水体TN、TP含量的时空变化特征以及流域TN面源污染的产生及入河特征。本文以云台山河实际控制目标为依据,计算流域水体纳污能力,确定流域污染物总量

控制目标,以期为流域面源污染精准控制提供决策依据,为少资料流域构建面源污染负荷模型提供参考。

1 材料与方法

1.1 研究区概况

云台山河位于江苏省南京市江宁区,是秦淮河的 主要支流之一,全长9.4 km,流域总面积约183.2 km²。 云坝河、胜利河为云台山河的两个上游支流,下游有 一条支流阳山河汇入(图1)。研究区地处北亚热带 季风气候区,年平均气温15.7 ℃,年均降水量1067 mm,降水主要集中在6—9月份,光、热以及水资源较 为丰富。

云台山河流域是典型的农业城镇混合区域,土地 利用类型复杂,主要为农业用地(38%),其次为城镇用 地(22%)、未利用地(19%)以及林地(18%)。未利用土 地主要包括未开发的低山丘陵、河滨草地、交通道路以 及裸土地等。林地主要为自然林,分布在流域上游。 根据河流关系和高程特征,云台山河流域被分为胜利 河片区、云坝河片区、主干流片区、阳山河片区(图1)。 流域自上游到下游,林地及农业用地比例逐渐降低,城 镇用地比例升高。其中胜利河片区与主干流片区是 以农业用地为主、城镇用地为辅的典型半城镇化区域, 农田面积比例为37%~42%,城镇面积比例为20%~ 22%。云坝河片区是城镇化程度较低、以农林用地为 主的区域,农田及林地面积比例高达70%。阳山河片 区的城镇化程度最高,城镇面积比例达到43%。结合 云台山河流域河网特征、土地利用类型以及子片区划 分情况,研究自上而下共设置8个采样点,其中S1、S2 和S7分别位于云坝河、胜利河和阳山河片区出口处, S3~S6位于云台山河主干流,S8位于流域总出口处。

1.2 研究方法

本研究首先基于自主编写的半分布式降雨-径

Figure 1 Detail location and sampling points of the study area

流水文模型,模拟流域的逐日产汇流量,以此作为水 量基础,结合面源污染负荷模型,计算污染物产生量 与入河量。其次根据实测水质数据与一维水质方程, 反演污染物实际入河量,对模型效果初步评估。最 后,根据实际水功能区划分,计算流域的实际纳污能 力,与模型计算结果相结合进行流域污染物削减量分 析,并提出相应的流域面源污染防治措施。

1.2.1 样品采集与分析

于2019年3月至12月,对云台山河支流及主干流进行逐月样品采集。采用清洗过的采水器从距水面20 cm处采集河流水样,采集的水样立即转入预先清洗过的聚乙烯样品瓶中,并放入冷藏箱内,尽快送 至实验室分析。未过滤水样采用连续注射分析仪 (Skalar San++,荷兰)分析水体中的TN和TP浓度,方 法检测限:TN为0.01 mg·L⁻¹,TP为0.001 mg·L⁻¹。上 述指标检测均在中国科学院南京地理与湖泊研究所 公共技术服务中心完成。分析的TN和TP数据,主要 用于云台山河氮磷时空特征以及面源污染入河特征 研究。

1.2.2 模型原理与构建

(1)降雨-径流水文模型

水文模型的编写基于 C++语言,在 Visual C++ 6.0

编译器中完成,主要分为产流、汇流两个模块。产流 模块包括水面产流、城镇产流、旱地产流与水田产流 4种产流类型,不同的产流类型采用不同的计算方 法^[12],具体计算公式见表1。蒸散发折算系数根据《江 苏省水文手册》确定,旱地及水田产流模型相关系数参 考课题组前期研究结果^[12]以及研究区实际情况进行选 定。汇流模块包括坡地汇流和河道汇流两个过程,本 文分别采用纳什瞬时单位线法和马斯京根法进行计 算,通过河道分段来模拟流量在河道中的汇流过程。

(2)氮磷面源污染负荷模型

面源污染负荷模型主要包括污染负荷产生模块 和处理模块。污染产生模块可计算各类污染负荷产 生量,包含农村居民生活、畜禽养殖、农业种植及城镇 径流产污4个部分,污染处理模块用于计算污染负荷 在迁移转化过程中的损失量^[13],具体计算方法见表2。 人均排污系数采用生态环境部华南环境科学研究所 在江苏南京的实测数据。畜禽产污量根据《全国规模 化畜禽养殖业污染情况调查及防治对策》,由畜禽粪 便污染物含量的平均值与排泄系数相乘得到。水田 产流期间径流中TN、TP的平均浓度参考王鹏等^[14]的 研究成果,TN为3.81 mg·L⁻¹,TP为0.13 mg·L⁻¹。旱地 产流模式的计算参数则参考张荣保等^[15]在江苏宜兴 2021年1月

表1 降雨-径流水文模型子模块计算方法

Table 1 Calculation of modules of rainfall-runoff hydrological model

子模块Submodule	计算公式 Computational formula	参数意义 Parameter meaning
水面产流	$R_{\rm w} = P - \alpha \times E$	R _* 为水面日产流量,mm;P为日降水量,mm;α为蒸发折 算系数;E为蒸发皿日蒸发量,mm。
城镇产流	$R_s = P - \alpha \times E$	R _s 为城镇用地日产流量,mm;其余参数意义同上。
早地产流	$\begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	R 、为旱地地区的日产流量,mm; W_{M} 为全流域平均的最大 蓄水量,mm; W_{0} 为时段初始全流域平均的蓄水量,mm; E_{M} 为水面蒸发量,mm; P_{0} 为初期土壤蓄水量,mm; W_{MM} 为 流域内所有栅格中最大的蓄水容量,mm; b 为蓄水容量 曲线的抛物线指数。
水田产流	$\begin{cases} H_2 = P - \beta \times E_M + H_1 - f \\ \ddot{R}H_2 > H_P, R_e = H_2 - H_P \\ \ddot{R}H_n < H_2 \leq H_P, R_e = H_2 - \frac{H_P + H_n}{2} \\ \ddot{R}H_d < H_2 \leq H_n, R_e = H_2 - H_n \\ \dddot{R}\frac{H_d + H_n}{2} < H_2 < H_n, R_e = H_2 - \frac{H_d + H_n}{2} \\ \dddot{R}H_2 \leq \frac{H_d + H_n}{2}, R_e = 0 \end{cases}$	R。为水田日产流量,mm;β为水田的需水系数;f为水田 的回归水量,mm;H ₁ 为计算时段初始水田水深,mm;H ₂ 为计算时段末期水田水深,mm;H _p 为水稻生长的耐淹水 深,mm;H _a 为水稻生长的适宜水深最大值,mm;H _d 为水 稻生长的适宜水深最小值,mm。

表2 污染负荷模型子模块计算方法

Table 2 Calculation of modules of pollution load model

模块	污染类型	计算公式	参数意义
Modules	Pollution types	Computational formula	Parameter meaning
污染负荷 产生模块	农村生活产污 畜禽养殖产污	$M_* = S \times R$	$M_{\rm a}$ 为污染负荷产生量,kg;S为数量;R为单位污染负荷产生量,kg。
	水田产污	$M_{\rm b}=C_{\rm b}\times R_{\rm e}\times A_{\rm b}$	M_b 为水田产污量, kg ; C_b 为水田径流的污染物浓度, kg ·m ⁻³ ; A_b 为水田面积, m ² ;其余参数意义同上。
	旱地产污	$M_{\rm e}=m \times R_{\rm v}^{\rm n}$	M。为旱地产污量, $kg;m,n$ 为实验所得系数,采取前人实验测定值 ¹⁵ ;其余参数意义同上。
	城镇产污	$M_{\rm d} = C_{\rm d} \times R_{\rm s} \times A_{\rm d}$	M_a 为城镇产污量, kg ; C_a 为城镇产流的污染物平均浓度, kg ·m ⁻³ ; A_a 为城镇面积, m^2 ;其余参数意义同上。
污染负荷 处理模块		$EFFLT = INFLT \times (1 - EFCCY/100)$ $INFLT = M \times P_i$	EFFLT为污染物出流量,即入河量,kg;INFLT为污染物入流量,kg;EFCCY为不同模块的处理效率;M为某种来源污染物产生量,kg;P,为污染负荷不同路径的占比。

梅林地区的实验测定值,TN取值为m₁=9.94,n₁=2.74,TP取值为m₂=0.50,n₂=0.38。污染负荷模型中处理模块处理率根据生态环境部南京环境科学研究所的《太湖流域污染源调查及污染负荷分析报告》中有关实验结果来确定。

(3)一维水质模型

河流主要为分段式河流与源头式河流两种类型。 分段式河流段末一维水质方程为:

$$C_e = C_x + S^n \times \frac{1 - \exp\left(-K\frac{x}{u}\right)}{K\frac{x}{u}} \tag{1}$$

式中: C_e 为段末的污染物浓度,mg·L⁻¹; C_x 为流经x距

离后的污染物浓度,mg·L⁻¹;Sⁿ为单位水体面源污染物增量,g·m⁻³;x为沿河段的纵向距离,m;u为设计流量下河道断面的平均流速,m·s⁻¹;K为综合降解系数, 污染物降解系数采用两点法^[16]计算得到,TN降解系数为0.17 s⁻¹,TP降解系数为0.14 s⁻¹。

对于分段式河流,污染物入河量为:

$$W = S^n \times Q \times t \tag{2}$$

式中:W为污染物入河量,g;Q为河流流量,m³·s⁻¹;t为 相应的时间,s。

对于源头式河流,污染物入河量的计算采用以下 公式:

$$W = \left(C_e \times \frac{K\frac{x}{u}}{1 - \exp\left(-K\frac{x}{u}\right)} - C_0\right) \times Q \times t \tag{3}$$

式中: C_e 为河流污染物背景浓度,mg·L⁻¹; C_0 为初始断面污染物浓度,mg·L⁻¹。其余参数意义同上。

(4)水体纳污能力计算

根据《水域纳污能力计算规程》(GB/T 25173—2010)规定和计算精度要求,并结合云台山河流域实际情况,采用一维稳态模型进行水体纳污能力计算的最小空间单元为河段,因此将流域内河流划分为胜利河、云坝河、阳山河以及云台山河主干流4个河段。在90%的枯水年水动力条件下计算河流的纳污能力,各河段纳污能力的计算公式如下:

$$W_{ij} = Q_{ij} \times \left[\frac{Cs_i}{K_x} - Co_i \times \exp\left(-K \frac{x}{2u} \right) \right]$$
(4)

式中: W_{ij} 为第i河段第j日的纳污能力,g·s⁻¹; Q_{ij} 为第i河段第j日的平均流量; C_{s_i} 为第i河段水环境目标控制浓度; C_{o_i} 为河段上游来水的污染物浓度。其余参数意义同上。

全区域的纳污能力为分河段纳污能力之和,计算 公式为:

$$W = \sum_{j=1}^{365} \sum_{i=1}^{n} \alpha_{ij} W_{ij}$$
(5)

式中:W为区域总纳污容量; *α*_i为不均匀系数,取值在 0~1,取值依据为河道宽度,宽度越大,其值越小。

1.3 数据准备与模型验证

模拟所需资料包括空间数据和属性数据等,具体 来源见表3。研究河段水环境功能区标准根据《南京 市江宁区水资源综合规划》确定,水质标准采用《地表 水环境质量标准》(GB 3838—2002)。

由于云台山河流域资料的稀缺性,流域出口流量 数据由实测流速乘以断面面积得到。模型出水口为

农业环境科学学报 第40卷第1期

云台山河干流段末断面(S8),2019年流域出口汇流 量模拟结果见图2。云台山河全年总过水量3.5×10⁷ m³,年内平均流量仅为1.1 m³·s⁻¹,河流流量较小,滞 留时间较长。流量在年内分布较为均匀,整体与降水 趋势一致。计算得到模型纳什效率系数*E*=-0.16(*n*= 10),表明模拟结果接近观测值的平均值水平,总体结 果可信,但过程模拟误差大。由于研究区流域水文资 料稀缺,实测流量数据有限,模拟误差较大,但本文认 为水量结果作为面源污染负荷模拟的基础,对氮磷入 河污染物总量产生一定的影响,但对不同来源氮磷的 相对贡献比例影响较小,可以反映各分区氮磷来源及 其入河特征。因此可将水文模型模拟结果作为污染 负荷模型的水量基础。

2 结果与讨论

2.1 河流 TN、TP 时空特征分析

2019年云台山河 TN浓度为0.5~18.0 mg·L⁻¹(*n*=79),平均值为5.1 mg·L⁻¹,TP浓度为0.02~1.90 mg·L⁻¹,平均值为0.14 mg·L⁻¹。根据《地表水环境质量标准》(GB 3838—2002)中IV类水质标准(TN:1.5 mg·L⁻¹,TP:0.3 mg·L⁻¹),云台山河各河段TN均超IV类水质标准,TP仅阳山河支流超IV类水质标准。因此云台山河水质状况不容乐观,应重点控制氮污染物输入。

研究区河流水体中TN和TP浓度存在显著的空间异质性。从图3可以看出,位于流域上游的S1~S3 采样点TN浓度(平均值为3.1 mg·L⁻¹)显著低于其他 河段(平均值为6.2 mg·L⁻¹)(P<0.05)。在河流流动过 程中,外源污染的不断汇入会导致下游浓度高于上 游^[18]。S4~S8河段各采样点TN浓度无显著性差异(P> 0.05),表明该河段内无其他外源输入。S3到S4浓度 的骤升可能是因为S3~S4河段有点源污染汇入。S1 样点TN浓度显著高于S2,这主要因为农业化肥使用 比城市径流产生更多的氮,并进入河流水体^[19]。云台

表3 数据及来源

Table 3 Data and sources

数据 Data	类型 Type	数据描述 Data description	来源 Source
数字高程(DEM)	栅格	高程、坡度、坡长、坡向、流域边界	地理空间数据云
土地利用	栅格	分为水域、城镇、农田、林地、未利用地5类	地理空间数据云
流域边界	矢量	ArcGIS水文分析模块提取,实际考察修正	地理空间数据云
河网水系	矢量	地图影像数字化	谷歌地球
气象数据	DBF	逐日降雨量、逐日蒸发量	南京气象站、江宁雨量站
实地监测数据	DBF	水文水质资料	实地采样分析
社会经济数据	DBF	研究区人口、经济、农业等数据	中国统计信息网

山河 S7样点 TP浓度高于其他采样点,但整体无统计 学上的差异性(P>0.05)。城乡结合型河流水体中 TP 浓度从上游到下游变化趋势相对较缓,主要是沿途接 纳城镇与农业面源污染,因此受到城市污染与农业污 染影响所致^[20]。 云台山河支流与干流年内变化存在差异。从图 4可以看出,上游云坝河(S1)3—9月TN浓度变化较 为平稳(平均值为2.6 mg·L⁻¹);10月浓度骤升(11.0 mg·L⁻¹),主要因为极低的月降雨量(12 mm)和高蒸发 量导致水量下降。胜利河(S2)年内变化不显著(1.7±

Figure 2 Simulation result of the daily flow of Yuntaishan River Basin in 2019

图 3 流域河流中 TN 和 TP 浓度空间分布 Figure 3 Spatial distribution of TN and TP concentration in river basin

图4 流域河流主要断面TN和TP浓度逐月变化

Figure 4 Monthly TN and TP pollutants concentration in major river sections of the basin

0.96 mg·L⁻¹),可能与上游水库水量补给有关。S8采 样点作为流域出口,呈现出雨季浓度较低(平均值为 3.5 mg·L⁻¹)、旱季浓度较高的特征(平均值为7.5 mg· L⁻¹),这与其他流域河流特征类似^[21]。雨季水量大、温 度高,对污染物有一定的稀释作用并促进水体中氮的 降解^[22],同时水生植物的生长会消耗部分营养盐^[23]。 位于下游的阳山河(S7)春季TN、TP浓度显著高于其 他月份,主要与3-4月份的沿河放牧活动有关。TP 浓度年内变化缓慢,表现为逐渐下降的趋势,3-5月 平均浓度为0.35 mg·L⁻¹,6-8月平均浓度0.13 mg· L⁻¹,9—12月平均浓度为0.06 mg·L⁻¹。云台山河 TP浓 度与PO₄⁻呈明显正相关(P<0.05, R²=0.8), 3-5月份 正值农业施肥期,未被农作物吸收的部分无机磷随径 流进入河流水体,导致磷含量较高。6-8月份正值 汛期,降雨径流的稀释作用导致河流磷浓度降低124]。 而9-12月份,河流磷来源主要为土壤固有磷,且悬 浮物含量降低,导致磷浓度骤然降低[25]。

2.2 流域 TN 面源污染产生量分析

为验证基于模型模拟结果计算的面源污染年入 河量的精度,研究利用一维水质模型对污染物入河量 进行了反演计算,并与模型估算的污染物入河量进行 对比(表4)。结果表明,TN的模拟值较实测值低 18.4 t,相对误差为14.2%;TP的模拟值较实测值高 4.5 t。TN面源污染的估算结果较好,而TP的估算值 偏差较大。一方面,TP入河量较小,实测数据具有一 定的随机性,且实测值为瞬时值,模型计算数据为平 均值,两者存在一定的差异性。另一方面,水生植物 及悬浮颗粒对磷元素存在一定的吸收与吸附作用,而 模型为简单的经验系数模型,没有考虑磷在水体中的 迁移转化过程,导致模拟值高于实测值。综合来看, TN面源污染的模拟误差在可接受的范围之内,表明面源污染负荷模型对TN的模拟结果较好。以下基于模型结果主要对流域TN污染物进行分析。

云台山河流域的TN污染负荷产生量占比计算结 果见图5,逐月产生量结果见图6。云台山河流域TN 年产生量为581.1t,农村生活及农田径流产生的氮是 主要来源,分别占总产生量的36%和35%,畜禽养殖 及城镇径流产生氮贡献较少,分别占总产生量的22%

表4 流域面源污染3—11月TN、TP入河量比较

Table 4 Comparison of non-point source pollution into the river from March to November

类别 Type	模拟值 Simulated value/t	实测值 Measured value/t	绝对误差 Absolute error/t	相对误差 Relative error/%
TN	111.0	129.4	-18.4	14.2
TP	9.1	4.6	4.5	97.8

2021年1月

和7%。大量研究表明,农业活动产生的氮是河流水体重要来源,而城市区由于完备的污水收集处理系统,面源TN污染产生量相对较低^[26]。农田径流污染主要为旱地径流产污,水田产污贡献较少(图7)。在水稻生长期,水田多处于圩田的状态,径流多囤积于农田以供水稻生长,并未随地表水流汇入水体,氮元素多被农作物所吸收。旱地产污期间,前期残存在农田内的氮肥大多随降雨冲刷进入地表径流,大量氮元素进入水体,引起面源污染。流域内面源TN产生量存在空间差异性,胜利河片区与主干流片区TN的年产生量最多,分别为210.0、153.0 t,共占全流域TN产生量的62%,是云台山河全流域污染物来源的主要区域。 2.3 流域TN面源污染入河量分析

面源污染入河量模拟结果见图 7。云台山河流 域 TN 年入河量为 187.8 t,年入河比例(面源入河量与 产生量之比)为 32%。研究分析不同污染来源入河比

例发现,城镇径流来源的TN年污染产生量低,但入河 比例最高,为87%,主要因为城镇高不透水面比例使 得污染物更易被降雨径流冲刷携带至受纳水体^[27]。 畜禽养殖的TN污染入河比例最低,为16%。统计年 鉴显示2018年江宁区规模畜禽养殖场粪便无害化处 理和资源化利用率达98%以上,集中处理以及可持 续利用使得畜禽养殖污染入河比例较低。

总体来看,胜利河片区的TN入河量最高,占全流 域入河总量的36%;其次是主干流片区,占全流域的 27%。各片区入河量主要与片区总面积有关,因此研 究进一步分析了片区TN单位面积入河量。从图8可 以看出,各片区不同面源污染来源单位面积入河量存 在一定的空间差异性。胜利河片区与主干流片区的 不同来源单位面积TN入河量相似,表现为农田径流> 农村生活>城镇径流>畜禽养殖,主要与两片区土地 利用结构相似有关。云坝河片区高的农田径流污染 (TN为0.57 t·km⁻²)表明,该区域农田污染较其他地区 严重,农肥所含氮元素及降雨冲刷是流域径流污染的 主要原因[28]。阳山河片区则具有最高的城镇径流单 位面积入河量(TN为0.38 t·km⁻²),表明阳山河片区内 城市污染较其他区域严重,可能受到区域城镇化程度 的影响,不透水下垫面导致城市降雨径流污染加 重[29]。

2.4 流域TN面源污染控制方案

研究计算了云台山河各支流及干流TN纳污能

图8 云台山河流域不同来源TN 污染物单位面积入河量

Figure 8 Amount of TN pollutant into the river per unit area from different sources in the Yuntaishan River Basin

力,并根据TN入河量计算出各河段需削减量,结果如 表5所示。2019年的水文条件下,云台山河流域TN 纳污能力为50.5 t·a⁻¹。根据江苏省地表水功能区的 划分,云台山河2010—2020年水质保护目标为IV类 水。为达到目标水质标准,云台山河流流域TN需削 减量达137.3 t·a⁻¹,为纳污容量的270%。

云台山河流域以TN污染为主,因此为保证云台 山河流域水质达标,需对流域TN面源污染进行精准 控制。研究分析了各片区TN污染来源需削减量,结 果见图9。总体来看,在保持现状情况下,流域中农 田径流、农村生活、城镇径流、畜禽养殖的入河TN需 削减量分别为55.5、39.7、26.6、15.5 t·a⁻¹。在流域面 源污染控制中,胜利河片区、主干流片区以农田径流 及农村生活污染来源控制为主,两类污染来源共占污 染控制总量的69%,应重点控制。云坝河片区以农田

表 5 流域 TN 纳污能力及需削减量(t・a⁻¹) Table 5 Pollutants carrying capacity and pollutant reduction of TN in the basin(t・a⁻¹)

豆茸	入河量	纳污能力	需削减量
区域	Pollutant into the	Pollutant carrying	Pollutant
Subareas	river	capacity	reduction
胜利河片区	65.7	16.7	49
云坝河片区	40.6	7.7	32.9
主干流片区	49.3	13.4	35.9
阳山河片区	32.2	12.7	19.5
流域总计	187.8	50.5	137.3

TN 需削减量 TN reduction/(t·a⁻¹)

图9 流域不同来源污染TN 需削减量

径流污染控制为主,占污染控制总量的54%。阳山河 片区以径流污染控制为主,城镇径流与农田径流TN 需削减量各占该片区控制目标的36%。

据统计年鉴显示,南京市2018年农田单位面积 施肥量为244.9 kg·hm⁻²,通过优化施肥处理,可提高 水稻对氮素的吸收利用^[30],从而降低云台山河流域农 田TN入河量,以达到农田TN污染控制标准。农村生 活及畜禽养殖污染源,可通过分类收集、集中处理的 方式进行针对性管控。建立雨水调蓄池并完善城镇 雨污分流系统,则可有效减少城镇径流污染。

2.5 不足与展望

本文以云台山河流域为例,初步探讨了少资料 复杂小流域面源污染研究方法。文中水文模型仅为 面源污染负荷模型提供水量数据支撑,对于两者之 间更复杂的耦合方式,本文尚未进行进一步的深入 探讨。现提出本研究的不足之处,以便后续的深入 研究和完善。

在不同下垫面产流过程中,旱地产流计算模块采 用的是单层蓄满产流模式,仅考虑地表径流携带的污 染物,对地下径流的研究较少。在水田产流计算模 块,考虑了水稻的不同生长阶段需水量,但未考虑农 田灌溉方式对氮磷污染物产生量的影响。在不同的 生长阶段,农作物对水分的吸收和蒸腾作用有所不 同,施肥方式与作物对营养物的吸收程度也有所不 同。后续可对旱地产流及水田产流模块进行改进,以 适应不同研究区域的产流方式。

面源污染负荷模型中,不同面源污染来源的具体 参数来源于文献整合,具体测定数据较少,在提高模 型普适性的同时会对流域的污染物估算造成一定的 偏差。在后续的研究中,应加强对水质等数据的实际 监测,完善水质监测指标,提高模型的精确度。实际 情况下,水生植物及悬浮颗粒对磷元素存在一定的吸 收与吸附作用,而本文采用的面源污染负荷模型为简 单的经验系数模型,没有考虑磷在水体中的迁移转化 过程,因此造成了污染物估算偏差,有待进一步深入 研究。

3 结论

(1)云台山河各河段TN均超IV水质标准,TP仅 阳山河支流超IV类水质标准。总体TN浓度下游高于 上游,干流TN浓度旱季高于雨季。TP浓度空间变化 不明显,年内变化缓慢,表现为逐渐下降的趋势。

(2)TN面源污染负荷模拟结果表明农村生活及

农田径流是云台山河 TN 主要来源,胜利河片区与主 干流片区是污染物来源的主要区域。

(3)云台山河流域TN年入河量占面源产生量的 32%。上游地区农业/农村源具有高的单位面积氮磷 入河量,下游地区城镇径流源具有较高的单位面积氮 磷入河量。

(4)云台山河流域TN纳污能力为50.5 t・a⁻¹,为达 到Ⅳ类水质标准,云台山河流域TN 需削减量达 137.3 t・a⁻¹,其中农田径流和农村生活源入河TN 需削 减量最高,应重点防治。

(5)研究表明在流域水文资料较缺乏的情况下, 通过构建降雨-径流水文模型,以水文模型模拟结果 作为面源污染负荷模型的水量基础,并考虑面源污染 物的不同来源与迁移路径,可定量估算流域面源污染 物产生量及入河量。

参考文献:

- Wu Z A, Ye Q L. Water pollution loads and shifting within China's inter-province trade[J]. *Journal of Cleaner Production*, 2020, 259(18): 1-8.
- [2]欧阳威,刘迎春,冷思文,等.近三十年非点源污染研究发展趋势分析[J].农业环境科学学报,2018,37(10):2234-2241. OUYANG Wei, LIU Ying-chun, LENG Si-wen, et al. An analysis of research trends about non-point source pollution over the last three decades[J]. *Journal of Agro-Environment Science*, 2018, 37(10):2234-2241.
- [3] 贺瑞敏,张建云,陆桂华.我国非点源污染研究进展与发展趋势[J]. 水文,2005,25(4):10-13. HE Rui-min, ZHANG Jian-yun, LU Gui-hua. The trend of study on non-point source pollution in China[J]. *Hydrology*, 2005, 25(4):10-13.
- [4] 王淑莹, 代晋国, 李利生, 等. 水环境中非点源污染的研究[J]. 北京 工业大学学报, 2003, 29(4):486-490. WANG Shu-ying, DAI Jinguo, LI Li-sheng, et al. Study on non-point source pollution of water environment[J]. Journal of Beijing University of Technology, 2003, 29 (4):486-490.
- [5]张招招,程军蕊,毕军鹏. 甬江流域土地利用方式对面源磷污染的 影响:基于SWAT模型研究[J]. 农业环境科学学报, 2019, 38(3): 650-658. ZHANG Zhao-zhao, CHENG Jun-rui, BI Jun-peng. Impact of land use on non-point sources of phosphorus in the Yong River Basin:SWAT model analysis[J]. Journal of Agro-Environment Science, 2019, 38(3):650-658.
- [6] 王国重, 李中原, 曲建钢, 等. 桃庄河小流域农田面源污染特征研究 [J]. 环境科学与技术, 2016, 39(增刊1): 371-375. WANG Guochong, LI Zhong-yuan, QU Jian-gang, et al. Study on characteristics of farmland nonpoint source pollution in Taozhuang River Small Watershed[J]. Environmnet Science & Technology, 2016, 39(Suppl 1): 371-375.
- [7]金蕾,华蕾,荆红卫,等.非点源污染负荷估算方法研究进展及对北 京市的应用[J].环境污染与防治,2010,32(4):72-77,83. JIN Lei,

HUA Lei, JING Hong-wei, et al. Review of nonpoint source pollution loads estimation methods and its application in Beijing City[J]. *Environmental Pollution & Control*, 2010, 32(4):72–77, 83.

- [8] 童晓霞, 崔远来, 赵树君, 等. 基于改进的 SWAT模型农业面源污染 变化规律数值模拟——以赣抚平原灌区芳溪湖小流域为例[J]. 长 江科学院院报, 2015, 32(3): 89-94. TONG Xiao-xia, CUI Yuanlai, ZHAO Shu-jun, et al. Simulation on variation regularity of agricultural non-point source pollution by modified SWAT model: A case study of Fangxi Lake Small Watershed of Ganfu Plain Irrigation District [J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(3): 89-94.
- [9] Xie H, Dong J W, Shen Z Y, et al. Intra- and inter-event characteristics and controlling factors of agricultural nonpoint source pollution under different types of rainfall-runoff events[J]. *Catena*, 2019, 182(11): 1-12.
- [10] 赵串串, 冯倩, 侯文涛, 等. 基于 AnnAGNPS 模型的灞河流域非点源 污染模拟研究[J]. 环境污染与防治, 2019, 41(3): 317-322.
 ZHAO Chuan-chuan, FENG Qian, HOU Wen-tao, et al. Simulation of non-point source pollution based on AnnAGNPS model in Bahe River Basin[J]. Environmental Pollution & Control, 2019, 41(3): 317-322.
- [11] 程文虎. 江河面源污染监测与评价方法研究[J]. 人民珠江, 2003 (6):44-46. CHENG Wen-hu. Study on method of monitoring and appraisal of river area-source pollution[J]. *Pearl River*, 2003(6):44-46.
- [12] 黄胜晔, 王腊春, 陈晓玲, 等. 基于平原水网区的半分布式水文模型构建与应用[J]. 长江流域资源与环境, 2011, 20(Z1):45-50. HUANG Sheng-ye, WANG La-chun, CHEN Xiao-ling, et al. A semi-distributed hydrological model and its application based on a plain river-net area[J]. Resources and Environment in the Yangtze Basin, 2011, 20(Z1):45-50.
- [13] 丁训静,姚琪,阮晓红.太湖流域污染负荷模型研究[J].水科学进展, 2003, 14(2):189-192. DING Xun-jing, YAO Qi, RUAN Xiaohong. Waste load model for the Taihu Basin[J]. Advance in Water Science, 2003, 14(2):189-192.
- [14] 王鹏, 高超, 姚琪, 等. 太湖丘陵地区农田氮素迁移的时空分布特征[J]. 环境科学, 2006, 27(8):1671-1675. WANG Peng, GAO Chao, YAO Qi, et al. Temporal and spatial distribution characteristics of nitrogen losses in hilly area of Taihu Lake[J]. Environmental Science, 2006, 27(8):1671-1675.
- [15] 张荣保,姚琪,计勇,等.太湖地区典型小流域非点源污染物流失规律——以宜兴梅林小流域为例[J].长江流域资源与环境,2005(1):94-98. ZHANG Rong-bao, YAO Qi, JI Yong, et al. A study on law of non-point source pollutants losses in a typical small watershed of Taihu Basin: A case study at Meilin Watershed in Yixing City of Jiangsu Province[J]. Resources and Environment in the Yangtze Basin, 2005(1):94-98.
- [16] 杨桐,杨常亮,刘卫红,等. 滇池流域城市型河流盘龙江总磷水环 境容量测算研究[J]. 环境监测管理与技术, 2011, 23(6):26-29. YANG Tong, YANG Chang-liang, LIU Wei-hong, et al. Calculation for water environmental capacity of total phosphorus in urban-type

农业环境科学学报 第40卷第1期

river Panlongjiang[J]. The Administration and Technique of Environmental Monitoring, 2011, 23(6):26-29.

- [17] 荣洁. 城市小流域水量水质模型及水环境容量计算的研究与应用
 [D]. 南京:南京大学, 2014:48-49. RONG Jie. Research and application of water quantity, quality model and environmental capacity computing in small urban watershed[D]. Nanjing: Nanjing University, 2014:48-49.
- [18] 高红莉, 李洪涛, 赵凤兰. 沙颍河(河南段)水污染的时空分布规律 [J]. 水资源保护, 2010, 26(3):23-26. GAO Hong-li, LI Hong-tao, ZHAO Feng-lan. Spatial and temporal distribution of water pollution of Shaying River (Henan section) [J]. Water Resources Protection, 2010, 26(3):23-26.
- [19] 郭红岩, 王晓蓉, 朱建国, 等. 太湖流域非点源氮污染对水质影响 的定量化研究[J]. 农业环境科学学报, 2003, 22(2):150-153. GUO Hong-yan, WANG Xiao-rong, ZHU Jian-guo, et al. Quantity of nitrogen from non-point source pollution in Taihu Lake catchment[J]. Journal of Agro-Environment Science, 2003, 22(2):150-153.
- [20] 余丽燕,杨浩,黄昌春,等.夏季滇池和入滇河流氮、磷污染特征
 [J]. 湖泊科学, 2016, 28(5):961-971. YU Li-yan, YANG Hao, HUANG Chang-chun, et al. Characteristic of nitrogen and phosphorous pollution in Lake Dianchi and its inflow rivers in summer[J]. Journal of Lake Sciences, 2016, 28(5):961-971.
- [21] 王书航,姜霞,金相灿. 巢湖入湖河流分类及污染特征分析[J]. 环境科学, 2011, 32(10):2834-2839. WANG Shu-hang, JIANG Xia, JIN Xiang-can. Classification and pollution characteristic analysis for inflow rivers of Chaohu Lake[J]. *Environmental Science*, 2011, 32 (10):2834-2839.
- [22] 张奇,李恒鹏,徐力刚,等.西苕溪流域非点源氮污染特征[J].农业环境科学学报,2011,30(7):1385-1390. ZHANG Qi, LI Hengpeng, XU Li-gang, et al. Characteristics of non-point source N pollution in Xitiaoxi Catchment, China[J]. Journal of Agro-Environment Science, 2011, 30(7):1385-1390.
- [23] 何娜,孙占祥,张玉龙,等.不同水生植物去除水体氮_磷的效果 [J].环境工程学报,2013,7(4):1295-1300. HE Na, SUN Zhanxiang, ZHANG Yu-long, et al. Efficiency of removing nitrogen and phosphorus from simulated wastewater using hydrophytes[J]. Chinese Journal of Environmental Engineering, 2013,7(4):1295-1300.

- [24] 龚小杰, 王晓锋, 刘婷婷, 等. 流域场镇发展下三峡水库典型入库 河流水体碳、氮、磷时空特征及富营养化评价[J]. 湖泊科学, 2020, 32(1):111-123. GONG Xiao-jie, WANG Xiao-feng, LIU Tingting, et al. Spatial-temporal characteristics of carbon, nitrogen and phosphorus and eutrophication assessment in a typical river of Three Gorges Reservoir under the development of field towns[J]. Journal of Lake Sciences, 2020, 32(1):111-123.
- [25] 李莹杰, 王丽婧, 李虹, 等. 不同水期洞庭湖水体中磷分布特征及 影响因素[J]. 环境科学, 2019, 40(5):2170-2177. LI Ying-jie, WANG Li-jing, LI Hong, et al. Distribution characteristics and influencing factors of phosphorus in the Dongting Lake at different water periods[J]. Environmental Science, 2019, 40(5):2170-2177.
- [26] 廖炜,李璐,杨伟,等. 城镇化过程中的流域面源污染时空变化[J]. 长江流域资源与环境, 2018, 27(8):1776-1783. LIAO Wei, LI Lu, YANG Wei, et al. Spatio-temporal change of non-point source pollution loads in the process of urbanization[J]. Resources and Environment in the Yangtze Basin, 2018, 27(8):1776-1783.
- [27] Ma Z B, Ni H G, Zeng H, et al. Function formula for first flush analysis in mixed watersheds: A comparison of power and polynomial methods[J]. *Journal of Hydrology*, 2011, 402(3/4):333–339.
- [28] Liu J, Ouyang X Q, Shen J L, et al. Nitrogen and phosphorus runoff losses were influenced by chemical fertilization but not by pesticide application in a double rice-cropping system in the subtropical hilly region of China[J]. Science of the Total Environment, 2020, 715(1):1– 10.
- [29] 高斌,许有鹏,陆苗,等.高度城镇化地区城市小区降雨径流污染 特征及负荷估算[J].环境科学,2020,42(8):3657-3664. GAO Bing, XU You-peng, LU Miao, et al. Analysis of rainfall runoff pollution load estimation for urban communities in a highly urbanized region[J]. Environmental Science, 2020, 42(8):3657-3664.
- [30] 盛伟红, 刘文波, 赵晨光, 等. 优化施肥对不同轮作系统稻田氨挥 发的影响[J]. 西北农林科技大学学报(自然科学版), 2018, 46(7): 46-53, 65. SHENG Wei-hong, LIU Wen-bo, ZHAO Chen-guang, et al. Effect of optimized fertilization on ammonia volatilization of paddy rice under different rotation systems[J]. Journal of Northwest A&F University(Natural Science Edition), 2018, 46(7):46-53, 65.