引用格式:

王雷立,董柯清,张严玲,刘青青,王翠玲. 玉米 DREB 转录因子家族的全基因组鉴定与分析[J]. 湖南农 业大学学报(自然科学版), 2022, 48(3): 270–281.

WANG L L, DONG K Q, ZHANG Y L, LIU Q Q, WANG C L. Genome-wide identification and analysis of DREB transcription factor family in maize[J]. Journal of Hunan Agricultural University(Natural Sciences), 2022, 48(3): 270–281.

投稿网址: http://xb.hunau.edu.cn

玉米 DREB 转录因子家族的全基因组鉴定与分析

王雷立,董柯清,张严玲,刘青青*,王翠玲*

(河南科技大学农学院,河南 洛阳 471023)

摘 要:借助生物信息学手段,从玉米 DREB 家族基因的鉴定、基因结构、顺式作用元件等多角度进行解析, 以期了解其在抗逆途径中的潜在功能。结果表明:玉米中共有 87 个 DREB 家族成员,分为 6 个亚组,理化性质 分析结果表明其编码的氨基酸序列长度为 125~452 个氨基酸,均编码亲水性蛋白;在玉米 10 条染色体上均有 分布,在4号、5 号染色体长臂处较为集中;仅有少数基因含有内含子,大多数成员只以 CDS 的形式存在且在 各亚组之间保守;启动子区域除含有 MBS 等响应干旱胁迫的元件外,还含有响应赤霉素、ABA、MeJA 等相关 调控途径的元件;物种共线性分析结果表明,高粱与玉米 DREB 家族成员之间存在共线性特征,且部分基因呈 现倍性关系;基于转录组数据的表达模式分析显示,在干旱、盐、干旱和盐双重胁迫处理下,仅有几个基因的 表达水平显著升高,多数 DREB 家族基因以下调的表达方式参与胁迫响应。

关键词:玉米; DREB 家族基因; 生物信息学; 全基因组鉴定

中图分类号: S513.035.3 文献标志码: A 文章编号: 1007-1032(2022)03-0270-12

Genome-wide identification and analysis of DREB transcription factor family in maize

WANG Leili, DONG Keqing, ZHANG Yanling, LIU Qingqing^{*}, WANG Cuiling^{*}

(College of Agriculture, Henan University of Science and Technology, Luoyang, Henan 471023, China)

Abstract: By use of bioinformatics methods, the identification, gene structure and cis acting elements of DREB family genes in maize were analyzed in order to understand their potential functions in stress resistance pathway. The results show that there were 87 DREB family members in maize, which could be divided into 6 subgroups. The length of the amino acid sequence was 125-452 amino acids, which encoded hydrophilic protein. They were distributed on 10 chromosomes of maize and concentrated at the long arm of the chromosome 4 and 5. Only a few genes contain introns, and most members exist only in the form of CDS and were conserved among subgroups. In addition to MBS and other elements in response to drought stress, the promoter region also contains elements in response to Gibberellin, ABA, MeJA and other related regulatory pathways. Species collinearity analysis showed that there was collinearity relationship among DREB family genes in sorghum and maize, and some genes showed ploidy relationship. Expression pattern analysis based on transcriptome data showed that under drought, salt and drought and salt stress, the expression levels of only a few genes were significantly increased, and the down regulated expression of most DREB family genes was involved in stress response.

收稿日期: 2021-08-13 修回日期: 2022-05-30

基金项目: 国家自然科学基金项目(31901561、U2004153); 河南省重点研发与推广专项(202102110010)

作者简介:王雷立(1995—),男,河南商丘人,硕士研究生,主要从事玉米遗传育种研究,hkdnxywll@163.com;*通信作者,刘青青,博 士,讲师,主要从事玉米遗传育种研究,677qing@163.com;*通信作者,王翠玲,博士,副教授,主要从事玉米遗传育种研究, lywgg@126.com

Keywords: maize; dehydration-responsive element-binding protein family genes; bioinformatics; genome-wide identification

植物在自然条件下的生长发育受多重因素的 影响,在适应环境的进化过程中,形成调控响应机 制,包括对干旱、低温等非生物逆境胁迫的反应及 调控^[1]。AP2/EREBP家族是与植物细胞周期、生长 发育以及胁迫响应密切相关的转录因子家族。根据 其保守结构域的不同,可分为4个亚家族:①含有 2个串联的 AP2 保守结构域的 AP2 亚家族; ②含有 1个 AP2 保守结构域和1个 B3 结构域的 RAV 亚家 族; ③含有1个 AP2 保守结构域的 ERF 亚家族; ④含有 1 个 AP2 保守结构域的 DREB 亚家族^[2-4]。 DREB(dehydration-responsive element-binding protein) 是一类植物特有的转录因子,可以特异地结合 DRE/CRT 元件, 以激活上、下游基因的表达, 调控 植物对非生物胁迫的响应^[5]。DREB 转录因子是 AP2 超家族的成员,含有1个高度保守的 AP2/ERF 结构 域,是响应干旱、低温等胁迫应答的主要成分^[6]。

在拟南芥中, DREB 转录因子家族分为 6 个亚 组(A1、A2、A3、A4、A5、A6),其中 A1 亚组的 成员主要参与冷胁迫和干旱胁迫反应;A2 亚组主 要作为干旱、高盐胁迫和热响应的转录因子参与调 控;其他 4 个亚组响应其他的胁迫反应^[7–8]。田文 等^[9]在小麦基因组中鉴定到 204 个 *TaDREB* 基因并 划分为 6 个亚组,通过蛋白互作网络确定了 179 对 互作关系,证实了 *TaDREB2–7A–2* 等 5 个基因可以 参与小麦的热胁迫反应。研究人员在水稻、苹果、 羊草、欧李、菠萝等基因组中分别鉴定到 56、60、 26、39、20 个 DREB 家族成员,并对部分家族成员 的功能进行了探索及验证^[3,10–13]。

玉米是世界上种植面积较广泛的作物,玉米 DREB 基因主要集中于 A1 和 A2 亚组^[7]。LIU 等^[14] 对玉米基因组中 DREB1s 和 DREB2s 亚组进行了鉴 定,并研究了 ZmDREB2.7基因对植物抗旱性的机制; QIN 等^[15]研究认为 ZmDREB2A 基因可以响应多种胁 迫反应,且可提高植物对干旱胁迫的耐受性。

近年来,随着对玉米抗逆基因的研究增多, DREB 家族愈发受到关注。郭嘉等^[16]通过人工合成 DREB 基因序列获得转基因株系,通过盐碱胁迫分 析,证明转 DREB 基因株系对盐碱胁迫的耐受性显

著提高。研究^[17]表明, DREB 家族基因 ZmDREB2A 通过靶向调控半乳糖醇合成酶基因 ZmGOLS2 的表 达,参与到植物胁迫响应调控;此外,ZmDREB2A 还参与棉子糖及 IAA 的积累, 调控玉米生长与非生 物胁迫的耐受性,并在种子耐老化过程中发挥重要 作用^[7,17]。XIAO 等^[18]研究发现, 玉米 DREB1s 亚 组基因 ZmDREB1.7 定位于线粒体,并结合 orf355 启动子区域的 CRT/DRE 元件启动该基因的转录, orf355 又反过来刺激 ZmDREB1.7 的表达, 使 orf355 大量积累,导致玉米雄性不育。LI等^[19]从玉米中克 隆了 ZmDREB4.1,该基因不受任何生物胁迫与非生 物胁迫诱导,而直接与 DRE 元件结合,发挥转录 激活作用,过表达 ZmDREB4.1 使愈伤组织的再生 与生长受到抑制,并通过抑制细胞分裂使植株叶片 变小。以上研究结果表明, DREB 家族基因不仅在 植物胁迫抗性方面发挥着重要作用,同时也参与到 植物其他生长发育过程。

工业肥料的大量使用导致土壤环境不断恶化, 玉米的安全生产也受到威胁。筛选、发掘玉米逆境 抗性基因,对于玉米的优质育种、安全生产具有重 要的现实意义。本研究借助生物信息学手段,对已 公布的基因组序列进行挖掘,鉴定获得玉米 DREB 家族成员,并对其理化性质、亚细胞定位、基因结 构、启动子顺式作用元件等进行多维度分析,并依 据不同胁迫处理下转录组数据分析其表达模式,旨 在为后续研究该家族基因的生物学功能提供依据。

1 材料与方法

1.1 材料来源

从 Maizesequence 数据库(ftp://ftp.gramene.org/ pub/gramene)下载玉米自交系 B73 的基因组文件 (Zea_mays.B73_RefGen_v4.dna.toplevel.fa) 和 注 释 文件(Zea_mays.B73_RefGen_v4.47.gff3)。从 TAIR 网站(https://www.arabidopsis.org/)获取拟南芥序列。

1.2 玉米 DREB 家族成员的鉴定

从 Pfam 网站(http://pfam.xfam.org/)获取 AP2 保守 结构域(PF00847)的隐马可夫模型,运用 HMMER 3.0 从构建的本地蛋白数据库中进行检索,以 E-Value 值 1e-10 为标准进行筛选;运用本地 Blast 程序, 分别以拟南芥 DREB 家族成员 ABI4、DREB1A、 DREB2A 为信息探针进行检索,以E-Value 值 1e-10 为标准进行筛选,将上述过程所得信息进行数据汇 总,删除重复数据。为进一步确定鉴定的基因是否 为 DREB 亚家族成员,将鉴定的蛋白序列分别提交 到 NCBI 数据库中的 CD_Search 程序(https:// www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi) 和 Pfam、SMART(http://smart.embl-heidelberg.de/) 进行分析,仅保留含有 1 个 AP2 保守结构域的蛋白 序列,并依据 DREB 亚家族和 ERF 亚家族的区别 进行手动筛选。

1.3 理化性质预测及保守域结构元件分析

运用 ExPASy 网站的 ProtParam 工具(https://web. expasy.org/protparam/)对鉴定的 DREB 家族成员进 行理化性质预测;运用 Plant_mPLoc 在线软件预测 定位(http://www.csbio.sjtu.edu.cn/cgi-bin/PlantmPLoc); 运用 TBtools 软件^[20]Simple MEME Wrapper 和在线 软件 MEME(http://meme-suite.org/)对玉米 DREB 蛋 白保守结构域元件进行分析,并运用 TBtools 软件 进行可视化。

1.4 基因结构预测、染色体定位与启动子顺式作用 元件分析

运用 TBtools 软件 Gene Structure View(Advance) 预测玉米 DREB 家族成员的基因结构;运用 Gene Density Profile 和 Gene Location Visualize from GTF/GFF 对玉米 DREB 基因进行染色体定位;提 取玉米 DREB 转录因子家族基因起始密码子 ATG 上游 2500 bp,提交到 PlantCARE 网站进行预测, 并用 Simple BioSequence Viewer 程序进行可视化。

1.5 系统发生关系及物种共线性分析

运用 MEGA-X 对鉴定的蛋白序列进行系统发 生树的构建,建树采用邻接法(Neighbor-joining tree),参数设置为默认值。运用 One Step MCScanX 将下载的玉米 B73 基因组与高粱基因组进行共线性 分析,*E* 值设置为 1e-10,其余参数设置为默认值, 并使用 Daul Systeny Plot 进行可视化绘图。

1.6 胁迫处理下表达模式分析

从 MaizeGDB 数据库中获取玉米 DREB 家族基 因在对照处理(0.1 dS/m 盐浓度下含有 75%有效水)、 干旱胁迫(0.1 dS/m 盐浓度下含有 25%有效水)、盐 胁迫(15 dS/m 盐浓度下含有 75%有效水)及干旱与 盐双重胁迫(15 dS/m 盐浓度下含有 25%有效水)处 理 10 d 后的转录组数据^[21],通过 TBtools 中的 The Amazing Heatmap 工具绘制热图。

2 结果与分析

2.1 DREB 转录因子家族成员的鉴定及理化性质 分析

从 Pfam 网站下载 AP2 保守结构域的隐马可夫 模型,使用 HMMER 3.0 进行本地检索,通过 E 值 (E-Value≤1e-10)的筛选,在 B73 基因组中检索到 202 个含有 AP2 保守结构域的基因。利用本地 Blast 程序检索到与拟南芥 ABI4、DREB1A、DREB2A 基 因同源的基因分别有 128、136、145个,将结果汇 总并去除重复值后得到 214 个基因。将鉴定的基因 编码蛋白序列提交到 CD_Search、Pfam、SMART 网站筛选仅含1个 AP2 保守结构域的基因,并根据 DREB 亚家族和 ERF 亚家族的差异,最终鉴定到 87个 DREB 家族成员。将各基因编码蛋白质提交到 ProtParam 进行理化性质预测,运用 Plant_mPLoc 在线软件预测定位,结果如表1所示。最长的基因 ZmDREB18 编码 452 个氨基酸,最短的基因 ZmDREB25 仅编码 125 个氨基酸, ZmDREB56 和 ZmDREB70的基因编码长度为248个氨基酸,平均 编码长度为 259.67 个氨基酸;此外,总平均亲水系 数均为负值, 推测 DREB 转录因子家族成员均编码 亲水性蛋白;相对分子质量为 13 938~48 127, ZmDREB18的最大,为48127, ZmDREB25的最小, 为13938;在预测定位中,仅有 ZmDREB34 预测定 位至细胞质中, 50.57%的成员定位于细胞核, 另一 部分成员定位为细胞质和细胞核(占全部成员的 48.28%)。预测大多数 DREB 家族成员定位至细胞 核,与其转录因子功能相一致,推测玉米 DREB 家 族成员大多是作为核作用因子与核质转运作用因 子发挥作用。

表1 DREB基因家族的理化性质

Table 1 Physicochemical properties of DREB gene family

基因名称	基因 ID	染色体定位	氨基酸 长度/aa	等电点	预测定位	相对分子质量	总平均 亲水系数	不稳定 系数
ZmDREB1	Zm00001d027870	Chr1:16005938-16006903	321	5.99	细胞核	34 078	-0.377	42.97
ZmDREB2	Zm00001d028017	Chr1:20410911-20411813	300	7.03	细胞核	31 910	-0.250	63.79
ZmDREB3	Zm00001d028524	Chr1:38080422-38081126	234	4.99	细胞质、细胞核	24 111	-0.471	51.07
ZmDREB4	Zm00001d029679	Chr1:82474257-82474886	209	6.45	细胞质、细胞核	22 133	-0.453	48.49
ZmDREB5	Zm00001d029884	Chr1: 91990667-91991467	266	5.08	细胞核	27 690	-0.464	65.01
ZmDREB6	Zm00001d030513	Chr1:140679257-140680084	275	8.32	细胞核	29 904	-0.283	44.97
ZmDREB7	Zm00001d030862	Chr1:164035614-164036858	414	4.65	细胞核	43 934	-0.479	70.02
ZmDREB8	Zm00001d031728	Chr1:199720829-199721512	227	4.82	细胞质、细胞核	23 244	-0.395	61.24
ZmDREB9	Zm00001d031861	Chr1:204458557-204459636	359	6.42	细胞核	38 275	-0.510	61.39
ZmDREB10	Zm00001d032077	Chr1:211750252-211750944	230	4.75	细胞质、细胞核	24 689	-0.503	64.87
ZmDREB11	Zm00001d032295	Chr1:220776886-220777674	262	5.67	细胞核	28 167	-0.445	58.89
ZmDREB12	Zm00001d033353	Chr1:260045773-260047029	418	5.00	细胞核	44 437	-0.422	53.71
ZmDREB13	Zm00001d002079	Chr2:5505054-5505812	252	9.63	细胞质、细胞核	27 243	-0.787	60.59
ZmDREB14	Zm00001d002618	Chr2:16960148-16960816	222	5.34	细胞质、细胞核	24 031	-0.555	60.19
ZmDREB15	Zm00001d002620	Chr2:16974028-16974666	212	7.11	细胞质、细胞核	22 205	-0.719	61.26
ZmDREB16	Zm00001d002744	Chr2:21315391-21316053	220	5.57	细胞核	22 889	-0.472	65.08
ZmDREB17	Zm00001d002747	Chr2:21380521-21381279	252	4.79	细胞核	26 853	-0.447	58.22
ZmDREB18	Zm00001d002867	Chr2:25029642-25031000	452	8.99	细胞核	48 127	-0.714	69.88
ZmDREB19	Zm00001d006169	Chr2:200397718-200398512	264	5.28	细胞质、细胞核	27 628	-0.373	70.03
ZmDREB20	Zm00001d006170	Chr2:200403153-200403895	230	5.65	细胞质、细胞核	24 841	-0.434	70.99
ZmDREB21	Zm00001d006653	Chr2:213547650-213548585	311	8.16	细胞质、细胞核	33 506	-0.386	57.05
ZmDREB22	Zm00001d039424	Chr3:3934183-3934776	197	11.71	细胞质、细胞核	21 744	-0.902	74.51
ZmDREB23	Zm00001d041981	Chr3:146542859-146543596	245	6.29	细胞质、细胞核	26 300	-0.476	55.74
ZmDREB24	Zm00001d042593	Chr3:173057147-173057683	178	9.71	细胞质、细胞核	18 669	-0.456	53.98
ZmDREB25	Zm00001d043409	Chr3:199002822-199003199	125	10.40	细胞核	13 938	-0.198	40.57
ZmDREB26	Zm00001d048991	Chr4:11781874-11782518	214	4.65	细胞核	23 087	-0.279	37.72
ZmDREB27	Zm00001d049889	Chr4:50775492-50776550	352	7.70	细胞核	37 881	-0.581	62.83
ZmDREB28	Zm00001d050787	Chr4:122810261-122810842	193	4.99	细胞质、细胞核	20 659	-0.607	54.08
ZmDREB29	Zm00001d051239	Chr4:149655139-149656476	445	9.31	细胞核	47 986	-0.639	64.24
ZmDREB30	Zm00001d051350	Chr4:155610012-155610749	245	5.11	细胞质、细胞核	26 364	-0.542	58.44
ZmDREB31	Zm00001d051451	Chr4:159111690-159112469	259	5.89	细胞质、细胞核	27 019	-0.569	65.36
ZmDREB32	Zm00001d051355	Chr4:155723238-155723924	228	5.34	细胞核	23 694	-0.379	55.41
ZmDREB33	Zm00001d052026	Chr4:176839153-176840184	154	6.90	细胞核	16 837	-0.441	43.70
ZmDREB34	Zm00001d052102	Chr4:179564558-179565262	234	5.55	细胞质	24 662	-0.376	51.51
ZmDREB35	Zm00001d052152	Chr4:181353441-181354229	262	4.63	细胞质、细胞核	26 970	-0.135	50.14
ZmDREB36	Zm00001d052229	Chr4:183995749-183996699	316	6.66	细胞核	33 955	-0.478	63.83
ZmDREB37	Zm00001d052732	Chr4:199279976-199280647	223	6.83	细胞质、细胞核	23 530	-0.249	77.08
ZmDREB38	Zm00001d015759	Chr5:116972852-116973938	213	9.47	细胞核	23 355	-0.627	67.83
ZmDREB39	Zm00001d016260	Chr5:154200894-154201658	254	4.96	细胞核	26 432	-0.317	52.42
ZmDREB40	Zm00001d016262	Chr5:154574992-154575720	242	5.72	细胞质、细胞核	26 053	-0.406	47.00
ZmDREB41	Zm00001d016848	Chr5:178257482-178258778	193	8.93	细胞质、细胞核	20 976	-0.497	48.87
ZmDREB42	Zm00001d017366	Chr5:193684947-193686296	449	9.18	细胞质、细胞核	48 039	-0.522	66.93
ZmDREB43	Zm00001d017477	Chr5:197146884-197147717	277	5.45	细胞核	28 835	-0.349	58.93
ZmDREB44	Zm00001d017478	Chr5:197222832-197223605	257	4.96	细胞质、细胞核	27 318	-0.433	54.37
ZmDREB45	Zm00001d017480	Chr5:197251323-197252003	228	5.35	细胞核	23 649	-0.399	58.64

			表1(续)					
基因名称	基因 ID	染色体定位	氨基酸 长度/aa	等电点	预测定位	相对分子质量	总平均 亲水系数	不稳定 系数
ZmDREB46	Zm00001d017591	Chr5:200872270-200873106	278	5.83	细胞质、细胞核	28 693	-0.540	72.34
ZmDREB47	Zm00001d017592	Chr5:201022603-201023298	231	4.85	细胞质、细胞核	24 603	-0.599	55.46
ZmDREB48	Zm00001d018081	Chr5:213912954-213913979	341	6.17	细胞质、细胞核	36 569	-0.589	79.05
ZmDREB49	Zm00001d018191	Chr5:216112775-216113527	250	4.65	细胞质、细胞核	25 392	-0.079	48.41
ZmDREB50	Zm00001d018288	Chr5:217999756-218005468	238	6.21	细胞质、细胞核	25 414	-0.488	40.06
ZmDREB51	Zm00001d035835	Chr6:54257239-54258228	173	6.42	细胞核	18 802	-0.206	39.26
ZmDREB52	Zm00001d036003	Chr6:65322473-65323171	232	4.65	细胞质、细胞核	24 432	-0.436	50.29
ZmDREB53	Zm00001d036298	Chr6:82562696-82563229	177	9.42	细胞质、细胞核	18 562	-0.518	54.66
ZmDREB54	Zm00001d036889	Chr6:105660981-105662401	230	9.83	细胞核	23 824	-0.297	64.93
ZmDREB55	Zm00001d037165	Chr6:114596733-1145974452	239	4.61	细胞质、细胞核	24 446	-0.202	56.38
ZmDREB56	Zm00001d038001	Chr6:144781755-144782501	248	7.99	细胞核	26 798	-0.687	61.93
ZmDREB57	Zm00001d038216	Chr6:151806188-151806748	186	9.45	细胞质、细胞核	19 173	-0.142	70.98
ZmDREB58	Zm00001d038446	Chr6: 157407857-157411040	279	6.88	细胞质、细胞核	30 712	-0.399	47.35
ZmDREB59	Zm00001d039077	Chr6:169626430-169627293	287	9.46	细胞质、细胞核	31 115	-0.443	58.56
ZmDREB60	Zm00001d019116	Chr7:17758679-17759647	322	9.35	细胞质、细胞核	34 366	-0.650	59.23
ZmDREB61	Zm00001d020267	Chr7:103377384-103378274	296	7.05	细胞核	31 450	-0.448	60.33
ZmDREB62	Zm00001d021205	Chr7:146027044-146027784	246	6.52	细胞质、细胞核	25 948	-0.313	67.57
ZmDREB63	Zm00001d021207	Chr7:146034693-146035409	238	5.03	细胞质、细胞核	25 345	-0.353	63.05
ZmDREB64	Zm00001d021208	Chr7:146038525-146039307	231	5.47	细胞质、细胞核	24 633	-0.274	68.88
ZmDREB65	Zm00001d021214	Chr7:146343053-146343709	218	9.85	细胞核	22 964	-0.346	47.77
ZmDREB66	Zm00001d021892	Chr7:165528436-165529362	308	6.67	细胞核	33 021	-0.562	54.56
ZmDREB67	Zm00001d008665	Chr8:16424145-16426175	261	5.18	细胞质、细胞核	28 699	-0.658	43.56
ZmDREB68	Zm00001d008872	Chr8:23393783-23394550	255	6.16	细胞核	26 091	-0.322	58.70
ZmDREB69	Zm00001d009622	Chr8:73601361-73602152	263	9.95	细胞核	28 486	-0.431	62.90
ZmDREB70	Zm00001d010048	Chr8:96823511-96826858	248	4.30	细胞核	26 545	-0.529	39.26
ZmDREB71	Zm00001d044857	Chr9:5518177-5519226	349	6.30	细胞核	37 128	-0.381	66.03
ZmDREB72	Zm00001d044950	Chr9:8102498-8103283	261	4.89	细胞质、细胞核	26 384	-0.122	56.88
ZmDREB73	Zm00001d045120	Chr9:13432181-13432923	169	5.91	细胞核	18 025	-0.312	51.64
ZmDREB74	Zm00001d045204	Chr9:15996069-15996644	191	10.01	细胞质、细胞核	19 587	-0.444	41.14
ZmDREB75	Zm00001d046292	Chr9:78537231-78537959	242	4.93	细胞核	25 626	-0.147	49.36
ZmDREB76	Zm00001d046501	Chr9:92852327-92853497	230	9.10	细胞核	23 076	-0.374	69.99
ZmDREB77	Zm00001d047860	Chr9:143638759-143639535	258	5.13	细胞质、细胞核	26 660	-0.486	46.44
ZmDREB78	Zm00001d048208	Chr9:152517945-152518838	297	7.76	细胞核	31 698	-0.298	61.63
ZmDREB79	Zm00001d048296	Chr9:154056208-154057131	307	5.65	细胞核	32 716	-0.387	40.37
ZmDREB80	Zm00001d048297	Chr9:154094049-154095017	322	6.89	细胞核	34 301	-0.274	46.76
ZmDREB81	Zm00001d025477	Chr10:120040997-120041623	208	5.31	细胞核	22 656	-0.329	57.19
ZmDREB82	Zm00001d025910	Chr10:133559160-133560374	404	9.14	细胞核	43 075	-0.758	65.46
ZmDREB83	Zm00001d026182	Chr10:140513369-140513983	204	5.23	细胞核	21 557	-0.495	63.58
ZmDREB84	Zm00001d026184	Chr10:140529822-140530718	298	5.17	细胞核	31 223	-0.580	70.12
ZmDREB85	Zm00001d026447	Chr10:145983350-145983982	210	9.71	细胞质、细胞核	23 046	-0.720	64.32
ZmDREB86	Zm00001d026486	Chr10:146894287-146895167	172	6.20	细胞核	18 380	-0.572	48.89
ZmDREB87	Zm00001d000179	Chr9: 120795086-120795319	281	4.91	细胞核	29 347	-0.464	66.65

2.2 染色体定位分析

应用 Gene Density Profile 和 Gene Location Visualize from GTF/GFF 程序,依据基因组注释信息 将鉴定到的 87 个 DREB 家族基因定位到玉米基因

组染色体上,结果如图 1 所示。从图 1 可以看出, 在玉米 10 条染色体上均有 DREB 家族基因的分布, 但分布不均匀,以 5 号染色体最多(13 个),1 号染 色体和 4 号染色体次之(12 个),9 号、2 号、6 号、 7 号、10 号染色体分别有 11、9、9、7、6 个 DREB 家族基因,3 号染色体和 8 号染色体的最少,仅有 4 个 DREB 家族基因。在这些基因中有部分基因呈

聚类现象,如 ZmDREB62、ZmDREB63、ZmDREB64、 ZmDREB65,这可能预示着该染色体片段在玉米响 应逆境胁迫中发挥着重要作用。

Fig.1 Chromosomal localization of DREB family genes in maize

2.3 DREB 转录因子家族成员系统发育分析

从 TAIR 网站获取拟南芥 DREB 家族序列,根据拟南芥 DREB 家族的亚组分类及下载先后顺序重新进行编号,序列 ID 见表 2。运用 MEGA-X,用 邻接法构建玉米 DREB 家族成员与拟南芥家族成员 系统发生关系树(图 2)。

依据拟南芥 DREB 家族的分类及系统发生关系的密切程度,将玉米 DREB 家族与拟南芥相关家族 聚类为 6 个亚组。在玉米 6 个亚组中,A1、A2、 A3、A4、A5、A6 亚组分别含有 15、13、1、20、 11、27 个基因。在这些基因中,部分基因与拟南芥 DREB 家族基因呈现一一对应(如 A5 亚组基因 ZmDREB24、ZmDREB57分别与拟南芥 A5-1、A5-2 基因为同源基因),而部分基因呈现加倍对应现象 (如 A5 亚组的 A5-3、A5-4、A5-5 基因分别对应 ZmDREB55/ZmDREB72、ZmDREB3/ZmDREB77、 ZmDREB35/ZmDREB49)。据此结果推测玉米在繁衍 过程中经历了多倍化过程,使部分基因出现加倍现 象;玉米 DREB 家族中,A2 亚组和 A3 亚组的系统 发生关系较为密切,推测 A2 亚组与 A3 亚组在进 化及生物学功能上相对保守。

夜 Z 10 円介 DRED 豕肤埜凶 ID ち	表 2	拟南芥 DREB 家族基因 ID 号
--------------------------	-----	--------------------

Table 2 DREB family gene ID number of Arabidopsis thaliana									
基因	基因 ID 号	基因	基因 ID 号	基因	基因 ID 号				
A1–1	AT1G63030	A2–6	AT2G40350	A5–5	AT1G21910				
A1–2	AT1G12610	A2–7	AT1G75490	A5–6	AT5G21960				
A1–3	AT4G25480	A3	AT2G40220	A5–7	AT1G74930				
A1–4	AT5G51990	A4–1	AT2G35700	A5–8	AT1G19210				
A1–5	AT4G25490	A4–2	AT4G16750	A6–1	AT4G13620				
A1–6	AT4G25470	A4–3	AT1G77200	A6–2	AT1G64380				
A2–1	AT3G57600	A44	AT1G01250	A6–3	AT1G36060				
A2–2	AT5G05410	A5–1	AT1G22810	A6–4	AT4G39780				
A2–3	AT3G11020	A5–2	AT1G71520	A6–5	AT5G65130				
A2–4	AT2G38340	A5–3	AT1G77640	A6–6	AT2G22200				
A2–5	AT2G40340	A5–4	AT1G44830	A6–7	AT1G78080				

图2 玉米DREB家族系统发生树 Fig.2 Phylogenetic tree of DREB family in maize

2.4 玉米 DREB 家族基因结构与保守域结构元件 分析

通过 MEME 网站对鉴定到的 87 个玉米 DREB 家族成员进行保守基序预测,对部分保守 Motif 进 行可视化。结果(图 3-A)显示,该家族成员含有保 守的 YRG 元件以及 RAYD 元件,利用 MEME 网站 和 Simple MEME Wrapper 程序对玉米 DREB 家族 保守基序进行预测。结果(图 3-B 左)表明,在鉴定 的所有玉米 DREB 家族成员内均含有 Motif1、 Motif2、Motif3、Motif4,推测该类 Motif 为 DREB 家族的主要保守基序; Motif7 主要出现在 A1 亚组, 而 Motif6 和 Motif9 则主要出现在 A6 亚组。综上推 测,各基因可能在不同途径中发挥作用,并且这些 Motif 的聚类出现有可能作为玉米 DREB 家族分化 与聚类的依据。

以获取的 GFF3 注释文件为参照,运用 TBtools 对鉴定到的玉米 DREB 家族成员进行基因结构可视 化。结果(图 3-B 右)表明,玉米 DREB 家族成员基 因结构内含有 0~2 个内含子,多数玉米 DREB 家 族基因不含有内含子,而只以 CDS 的形式出现。 但基因 *ZmDREB70* 在 5'UTR 部分含有内含子,推 测该内含子的存在可能在调控该基因的转录中发 挥作用。

图3 玉米DREB家族基因结构与保守基序

Fig.3 The gene structure and conserved motifs of DREB family in maize

2.5 启动子顺式作用元件分析

启动子作为调控基因表达及接受上游基因调 控结合的位点在抗逆及其他响应途径中发挥重要 作用,对启动子结构元件进行分析,可以了解该基 因可能参与的调控网络。本研究中,提取玉米 DREB 家族基因上游 2500 bp 序列并应用 PlantCARE 在线 软件对顺式作用元件进行分析,结果(图 4)显示,玉 米中 DREB 家族基因的启动子调控区域内除了含有 TATA_box、CAAT_box 等(未在图中显示)基础元件 外,还含有干旱、低温等胁迫的响应元件(如 MBS、 LTR 等元件),这些元件的存在可能是该类基因参与 干旱与低温等非生物胁迫调控的位点。此外,还存 在响应光周期、MeJA、赤霉素、脱落酸(ABA)等调 控元件(如 TGACG_Motif、GARE_Motif、G_box、 ABRE 等元件),表明玉米中 DREB 家族基因除了响 应干旱等胁迫反应外,还可能通过 G_box、 GARE-Motif 等顺式作用元件参与光周期、赤霉素 等相关的调控网络响应,进而调控植物生长发育。 从图 4 还可以看出,除 *ZmDREB1、ZmDREB31、 ZmDREB56、ZmDREB64、ZmDREB71、ZmDREB73* 等 6 个基因外,其他玉米 DREB 家族成员启动子区 域内均含有 ABRE 元件。因 ABRE 元件是 ABA 依 赖途径参与植物抗逆响应的重要元件,推测 DREB 家族成员能够通过 ABA 依赖途径参与到玉米抗逆 响应。

图4 玉米DREB家族启动子序列部分顺式作用元件分析 Fig.4 Analysis of partial cis acting elements of DREB family promoter sequence in maize

2.6 物种共线性分析

应用 One Step MCscanX 对玉米及其近缘物种 高粱进行共线性分析,结果(图 5)显示,玉米 DREB 家族基因与高粱存在高度相似性,并且多数基因呈 现同源倍性关系,即高粱的1个基因在玉米中会存 在2个或多个重复基因(如高粱 KXG40072 基因与 *ZmDREB1、ZmDREB79*存在共线性)。说明在进化 过程中可能存在加倍复制的现象,以适应物种生存 环境的改变。这一结果也表明高粱与玉米亲缘关系 较近,在基因挖掘和功能研究中两者可在一定程度 上互相提供参考。

Fig.5 Species collinearity analysis result of DREB family between maize and sorghum

2.7 胁迫处理下表达模式分析

为进一步研究 DREB 家族成员对胁迫因素的响应机制,从 MaizeGDB 网站获取公开的转录组数据 对不同胁迫下该家族成员的表达模式进行分析,结 果如图 6 所示。

与对照组相比,在干旱胁迫处理下多数基因的 表达量显著下调,而在各亚组中(除 A3 亚组外)均有 部分 DREB 家族基因表达量显著增加,表明该家族 基因在干旱逆境下可调动相关基因,差异表达响应 胁迫。在盐胁迫处理下,各亚组部分基因表达量与 对照组无显著变化或显著低于对照组,表明玉米 DREB 家族中部分基因不直接通过调控基因表达的 方式响应胁迫,或负调控参与盐胁迫响应途径;少 数几个基因(*ZmDREB26、ZmDREB 33、ZmDREB 39* 等)的表达量在盐胁迫环境下略有增加,表明这些基 因在盐胁迫响应中可能发挥着特殊的调控作用。在

干旱与盐双重胁迫下, DREB 家族基因多以下调表 达的方式参与响应胁迫调控。ZmDREB25 与 ZmDREB63 基因在干旱胁迫、盐胁迫单重胁迫处理 下表达模式与对照组无明显差异,而在干旱与盐处 理双重胁迫下表达量分别显著升高和降低,表明 ZmDREB25 与 ZmDREB63 基因的表达参与多个调 控途径, 且在于旱和盐处理双重胁迫响应中发挥相 反的调控机制。此外,在干旱、盐以及干旱与盐双 重胁迫下,有一类基因的表达始终未发生变化(如 ZmDREB8, ZmDREB15, ZmDREB27, ZmDREB17 等 13 个基因),对这类特殊参与响应调控机制的 DREB 家族基因的发掘研究,可为后续解析植物对 复杂胁迫环境中的响应机制提供帮助。综合转录组 数据分析,在干旱胁迫、盐胁迫及双重胁迫诱导下, DREB 家族基因通过改变基因表达模式来响应胁迫 因子,进而维持植株正常生长。

局表达;绿色示低表达; A AI 亚组; B A2 与 A3 亚组; C A4 亚组; D A5 亚组; E A6 亚组。 图 6 不同胁迫处理下DREB家族基因的表达模式

Fig.6 Expression patterns of DREB family under different stress treatments

3 结论与讨论

植物在自然环境中感受环境变化并及时响应

外界胁迫,在长期适应环境过程中进化出响应多种 胁迫的转录因子,参与调控响应胁迫途径。AP2/ERF 超家族是植物中广泛存在的一类转录因子,在非生 物胁迫的响应过程中发挥着重要的功能^[22]。鉴定玉 米 AP2/ERF 家族基因对了解 AP2/ERF 介导的激素 合成与信号通路的调控具有重要意义,有助于解析 玉米响应非生物胁迫过程中 AP2/ERF 家族的重要 功能。

本研究中,笔者依据网上已公布的基因组文 件,通过对保守序列的筛选共鉴定出 87 个玉米 DREB 家族基因, 与先前在玉米自交系 B73 中鉴定 的 DREB 家族基因存在数量差异^[23]。该差异的发生 可能是测序版本的不同及对家族成员筛选阈值的 设定不同所致。本研究发现,在 DREB 家族的几个 亚家族(如 A1、A2、A4 等)中较前人的研究^[24]有所 扩张,与LATA等^[24]提出的在胁迫作用下植物中片 段复制与串联重复事件的发生使 AP2/ERF 家族扩 张相类似,同时也为证实胁迫是 AP2/ERF 家族进化 的重要力量提供依据。亚细胞定位预测发现, 仅有 1 个玉米 DREB 家族基因(ZmDREB34)定位于细胞 质内,50%以上的家族基因定位于细胞核内,这与 玉米DREB转录因子家族主要在细胞核内发挥转录 因子作用的功能一致。在质膜与核两者并存的基因 在膜质运输中可能存在着未知的功能。此外,在系 统发生关系构建中发现, A2 亚组和 A3 亚组发生关 系密切,这与前人^[13]研究结果相似。基因结构分析 发现该类基因缺少内含子且主要以 CDS 的形式出 现, 推测该类基因在玉米进化过程中可能发生了剪 切,使该类基因更高效地表达,以响应环境的改变。

植物长期感受外界各种胁迫因素而在分子水 平上进化出相应的响应机制。植物对干旱和高温的 胁迫响应主要通过2个ABA 依赖和2个非ABA 依 赖转导途径^[25]。ABRE 元件是参与 ABA 调控基因 表达的顺式作用元件,在脱水诱导基因的启动子区 域均有分布,是响应干旱和高温的重要元件^[26-27]。 本试验鉴定的 87 个玉米 *DREB* 基因启动子区域多 数含有 ABRE 元件,暗示玉米中的 *DREB* 基因可通 过 ABA 依赖途径参与到干旱和高温胁迫的响应。

本研究中,通过共线性分析发现玉米与高粱之间存在串联重复。SCHNABLE等^[28]研究发现,玉 米相对于水稻、高粱等作物经历了更多的基因组复制事件,玉米基因组中的同源基因显著高于高粱等 近等物种。本研究中,鉴定到拟南芥部分基因在玉 米中呈现加倍对应现象,推测在玉米体内可能也存 在加倍的基因。对玉米 DREB 转录因子家族基因在 不同胁迫处理下的表达模式分析中发现, *ZmDREB8、ZmDREB15、ZmDREB27*等13个基因 的表达模式并未发生改变,依据 LI 等^[19]对 *ZmDREB4.1* 基因的研究结果,推测此类基因不受胁 迫诱导,可直接与 DRE 元件结合,并发挥转录激 活作用,参与到相关调控网络,进而调控植物的生 长发育进程。

参考文献:

- ZHU J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2): 313–324.
- [2] GHORBANI R, ZAKIPOUR Z, ALEMZADEH A, et al. Genome-wide analysis of AP₂/ERF transcription factors family in *Brassica napus*[J]. Physiology and Molecular Biology of Plants, 2020, 26(7): 1463–1476.
- [3] 沈兵琪,高晓宇,王大玮,等.苹果 DREB 转录因子 家族全基因组鉴定与分析[J].西北植物学报,2017, 37(3):460-469.
- [4] 张斌,唐满生.银杏 ERF转录因子家族的全基因组学鉴定及表达模式分析[J].湖南农业大学学报(自然科学版),2020,46(5):519–526.
- [5] HUANG X, SONG X P, CHEN R F, et al. Genome-wide analysis of the DREB subfamily in *Saccharum spontaneum* reveals their functional divergence during cold and drought stresses[J]. Frontiers in Genetics, 2020, 10: 1326.
- [6] 牛伟博. DREB 转录因子及其在植物抗逆育种中的应用进展[J]. 江苏农业科学, 2014, 42(8): 17-20.
- [7] HAN Q H, CHEN K L, YAN D, et al. ZmDREB2A regulates *ZmGH3*. 2 and *ZmRAFS*, shifting metabolism towards seed aging tolerance over seedling growth[J]. The Plant Journal, 2020, 104: 268–282.
- [8] LIU Z J, YUAN G X, LIU S, et al. Identified of a novel cis-element regulating the alternative splicing of *LcDREB2*[J]. Scientific Reports, 2017, 7: 46106.
- [9] 田文,郭启平,李梓彰,等.普通小麦 DREB 基因家 族的全基因组鉴定及热胁迫下的表达模式分析[J]. 麦 类作物学报,2018,38(10):1146–1156.
- [10] CHAI M N, CHEN H, YAN M K, et al. Identification and expression analysis of the DREB transcription factor family in pineapple(*Ananas comosus*(L.)Merr)[J]. PeerJ, 2020, 8(6): e9006.
- [11] NAKANO T, SUZUKI K, FUJIMURA T, et al. Genome-wide analysis of the *ERF* gene family in *Arabidopsis* and rice[J]. Plant Physiology, 2006, 140(2): 411–432.
- [12] 马兴勇,彭献军,苏蔓,等. 羊草 DREB 转录因子的

系统发育和功能研究[J]. 草业学报, 2012, 21(6): 190-197.

- [13] 汪泽文,杨依维,王鹏飞,等. 欧李 DREB 基因家族 的鉴定与分析[J]. 植物生理学报,2020,56(3):413-422.
- [14] LIU S X, WANG X L, WANG H W, et al. Genome-wide analysis of *ZmDREB* genes and their association with natural variation in drought tolerance at seedling stage of *Zea mays* L. [J]. PLOS Genetics, 2013, 9: e1003790.
- [15] QIN F, KAKIMOTO M, SAKUMA Y, et al. Regulation and functional analysis of *ZmDREB2A* in response to drought and heat stresses in *Zea mays* L[J]. The Plant Journal, 2007, 50(1): 54–69.
- [16] 郭嘉,孙传波,杨向东,等. 耐盐碱转基因玉米的获 得及其抗性分析[J]. 玉米科学, 2016, 24(6): 24–29.
- [17] GU L, ZHANG Y M, ZHANG M S, et al. *ZmGOLS2*, a target of transcription factor ZmDREB₂A, offers similar protection against abiotic stress as *ZmDREB₂A*[J]. Plant Molecular Biology, 2016, 90: 157–70.
- [18] XIAO S L, ZANG J, PEI Y R, et al. Activation of mitochondrial *orf355* gene expression by a nuclearencoded DREB transcription factor causes cytoplasmic male sterility in maize[J]. Molecular Plant, 2020, 13(9): 1270–1283.
- [19] LI S X, ZHAO Q, ZHU D Y, et al. A DREB-like transcription factor from maize(*Zea mays*), ZmDREB4.1, plays a negative role in plant growth and development[J]. Frontiers in Plant Science, 2018, 9: 395.
- [20] CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194–1202.
- [21] FORESTAN C, AIESE CIGLIANO R, FARINATI S, et al. Stress-induced and epigenetic-mediated maize

transcriptome regulation study by means of transcriptome reannotation and differential expression analysis[J]. Scientific Reports, 2016, 6: 30446.

- [22] MENG X P, LI F G, LIU C L, et al. Isolation and characterization of an *ERF* transcription factor gene from cotton(*Gossypium barbadense* L.)[J]. Plant Molecular Biology Reporter, 2020, 28(1): 176–183.
- [23] DU H W, HUANG M, ZHANG Z X, et al. Genome-wide analysis of the AP₂/ERF gene family in maize waterlogging stress response[J]. Euphytica, 2014, 198(1): 115–126.
- [24] LATA C, MISHRA A K, MUTHAMILARASAN M, et al. Genome-wide investigation and expression profiling of AP₂/ERF transcription factor superfamily in foxtail millet (*Setaria italica* L.)[J]. PLoS One, 2014, 9(11): e113092.
- [25] NAKASHIMA K, SHINWARI Z K, SAKUMA Y, et al. Organization and expression of two *Arabidopsis DREB*₂ genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression[J]. Plant Molecular Biology, 2000, 42(4): 657–665.
- [26] 曾佳,刘玲,周天顺,等.水稻 OsSSRP 的生物信息 学分析及耐盐性研究[J].湖南农业大学学报(自然科学 版), 2022, 48(2): 151–159.
- [27] 邹杰,刘媛.水稻 OsRZFP34 基因逆境表达特征及其 启动子的克隆与分析[J].湖南农业大学学报(自然科学 版), 2020, 46(6): 670-678.
- [28] SCHNABLE P S, WARE D, FULTON R S, et al. The B73 maize genome : complexity , diversity , and dynamics[J]. Science, 2009, 326: 1112–1115.

责任编辑:毛友纯 英文编辑:柳 正