首页 | 官方网站   微博 | 高级检索  
     

氮肥用量对小麦开花后根际土壤特性和产量的影响
引用本文:安婷婷,侯小畔,周亚男,刘卫玲,王群,李潮海,张学林.氮肥用量对小麦开花后根际土壤特性和产量的影响[J].中国农业科学,2017,50(17):3352-3364.
作者姓名:安婷婷  侯小畔  周亚男  刘卫玲  王群  李潮海  张学林
基金项目:国家公益性行业(农业)科研专项(201503117)、国家现代农业产业技术体系建设专项(CARS-02-19)、河南省教育厅项目(13A210491)
摘    要:【目的】明确小麦开花后根际土壤特性动态特征及其与产量和籽粒氮素积累量之间的关系,能够为生产上合理施肥、提高氮肥利用效率和减轻环境污染提供理论依据。【方法】2014—2015和2015—2016年在小麦季设置4个氮肥水平(0,CK;150 kg N·hm~(-2),N150;240 kg N·hm~(-2),N240和300 kg N·hm~(-2),N300)并于小麦开花期、灌浆中期和成熟期分层(0—20 cm和20—40 cm)测定小麦根际和非根际土壤铵态氮、硝态氮、蔗糖酶、脲酶,同时测定根、茎、叶和穗生物量及其氮素含量;重点分析根际土壤特性与小麦籽粒产量和氮素积累量之间的关系。【结果】(1)与CK相比,N150、N240和N300处理2年小麦籽粒产量的平均值分别增加99%、130%和107%,且处理之间差异显著。随施氮量的增加小麦根、茎、叶、穗生物量和地上部氮素积累量均呈增加趋势;氮肥回收率呈下降趋势,且处理之间差异显著。(2)从开花到成熟期,0—20 cm和20—40 cm土层小麦根际和非根际土壤铵态氮、硝态氮含量、土壤蔗糖酶和脲酶(0—20 cm除外)活性均呈下降趋势。处理CK、N150、N240和N300根际土壤铵态氮和硝态氮含量显著低于非根际土壤。4个处理2年0—20 cm根际土壤铵态氮含量平均值比非根际土壤降低29%,硝态氮含量降低22%;20—40 cm根际土壤铵态氮含量比非根际土降低34%,硝态氮含量降低14%。而根际土壤蔗糖酶和脲酶活性显著高于非根际土。4个处理2年0—20 cm根际土壤蔗糖酶活性比非根际土壤提高29%,脲酶活性提高15%;20—40 cm根际土壤蔗糖酶活性比非根际土壤提高33%,脲酶活性提高13%。(3)相关分析结果表明,小麦籽粒产量和籽粒氮素积累量均与0—20 cm和20—40 cm根际和非根际土壤无机氮(铵态氮+硝态氮)、脲酶和蔗糖酶(2016年籽粒氮素积累量除外)呈显著正相关。【结论】小麦根际土壤可利用性氮素含量小于非根际土壤,而酶活性高于非根际土;根际和非根际土壤与籽粒产量和籽粒氮素积累量呈显著正相关。根际和非根际土壤特性显著影响小麦籽粒产量。

关 键 词:小麦产量  氮肥  根际土壤  铵态氮、硝态氮    />
收稿时间:2017-02-07

Effects of Nitrogen Fertilizer Rates on Rhizosphere Soil Characteristics and Yield After Anthesis of Wheat
AN TingTing,HOU XiaoPan,ZHOU YaNan,LIU WeiLing,WANG Qun,LI ChaoHai,ZHANG XueLin.Effects of Nitrogen Fertilizer Rates on Rhizosphere Soil Characteristics and Yield After Anthesis of Wheat[J].Scientia Agricultura Sinica,2017,50(17):3352-3364.
Authors:AN TingTing  HOU XiaoPan  ZHOU YaNan  LIU WeiLing  WANG Qun  LI ChaoHai  ZHANG XueLin
Affiliation:Agronomy College, Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crop/State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002
Abstract:【Objective】 Making the relationship between rhizosphere soil properties and wheat grain yield or grain nitrogen(N) accumulation (GNA) clear could help managing N fertilizer application, improving N use efficiency and reducing environment pollution. 【Method】A field experiment with four N fertilizer treatments (0 kg N·hm-2, CK; 150 kg N·hm-2, N150; 240 kg N·hm-2, N240; 300 kg N·hm-2, N300) was conducted in 2014-2015 and 2015-2016, soil samples including rhizosphere soil (R) and bulk soil (B) in 0-20 cm and 20-40 cm depths were collected at anthesis, milking and maturity stages. Soil NH4+-N, NO3--N, urease, saccharase and wheat biomass including root, stem, leaf, spike biomass and their N content were measured, and the relationships between rhizosphere soil characteristics and grain yield and GNA were analyzed. 【Result】(1) Results of the experiment showed that in comparison with CK, wheat grain yields of three N fertilizer treatments increased by 99%, 130% and 107% for the two annual average, respectively. Wheat root, stem, leaf and spike biomass and aboveground nitrogen accumulation (ANA) increased with the N application rates increasing, while nitrogen recovery efficiency (NRE) declined, and their differences among the four treatments were significant. (2) Over the periods of studies, soil NH4+-N concentration, NO3--N concentration, soil sacharase and urease activities (0-20 cm excluded) of both rhizosphere and bulk soil in 0-20 cm and 20-40 cm depths showed a decreasing trend. The average NH4+-N and NO3--N concentration of four fertilizer treatments in rhizosphere soil was significantly lower than that in bulk soil. In comparison with bulk soil in 0-20 cm depth, rhizosphere soil NH4+-N concentration of four treatments in the two years reduced by 29%, and by 22% for NO3--N concentration; and rhizosphere soil NH4+-N concentration reduced by 34% and by 14% for NO3--N concentration in 20-40 cm depth. Rhizosphere soil sacharase activities in 0-20 cm depth increased by 29% than that of bulk soil, and by 15% for urease activities; while increased by 33% for sacharase activities and by 13% for urease activities in 20-40 cm. (3) Pearson correlation analysis showed that soil inorganic-N (NH4+-N + NO3--N), urease, and saccharase (2016 year GNA excluded) in rhizosphere soil and bulk soil were all significantly and positively correlated with wheat grain yield and GNA. 【Conclusion】All of these results indicated that wheat rhizosphere soil available N concentration was less than the bulk soil after anthesis stage, while rhizosphere soil enzyme activity was higher than the bulk soil. Grain yield and GNA were all significantly and positively correlated with rhizosphere and bulk soil. The variations of rhizosphere and bulk soil characteristics could affect wheat grain yield.
Keywords:wheat yield  nitrogen fertilizer  rhizosphere soil  NH4+-N  NO3--N  enzyme
本文献已被 CNKI 等数据库收录!
点击此处可从《中国农业科学》浏览原始摘要信息
点击此处可从《中国农业科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号