「文章编号] 1671-9387(2009)04-0108-07

黄土丘陵沟壑区沙棘光合特性及 气孔导度的数值模拟

李红生^{1a,1b},刘广全^{1b,2},陈存根^{1b},王鸿喆^{1b},徐怀同^{1a},周海光² (1 西北农林科技大学 a 资源环境学院,b 林学院 陕西 杨陵 712100;2 国际泥沙研究培训中心,北京 100044)

[摘 要]【目的】研究黄土丘陵沟壑区沙棘叶片的光合速率和气孔导度特性及其耦合关系,建立干旱条件下沙 棘叶片气孔导度模型。【方法】以 Li-6400 便携式光合仪测定的气体交换观测数据为基础,分析了沙棘叶片的光合速 率(*Pn*)、胞间 CO₂ 浓度(*Ci*)和气孔导度(*Gs*)的相关性,用 Ball-berry 和非直角双曲线光合模型描述了光合速率与气 孔导度间的关系。【结果】沙棘叶片 *Pn*与*Gs*日变化相对应且均呈现同步不对称"双峰"波动,具有典型"午休"现象, 首峰出现在上午 9:00 左右,次峰峰值小于首峰,出现在下午 15:00 以后;沙棘叶片 *Pn*与*Gs*呈正偏相关关系,而与 *Ci* 呈负偏相关关系,且不同月份 *Ci*与 *Pn*的偏相关系数均高于 *Gs*与 *Pn*,但 *Gs*与 *Ci*的简单相关并不稳定,8月份未达 显著水平;*Pn*与*Gs*、光合有效辐射(PAR)的简单相关分析表明,*Pn*与*Gs*、PAR 间均呈极显著正相关关系(*R²* = 0.8954,*R²* = 0.9902)。【结论】沙棘叶片衰老期间非气孔因素是光合作用的主要限制因子。联合 Ball-berry 气孔导度 模型和非直角双曲线光合模型建立的黄土丘陵沟壑区沙棘叶片气孔导度对环境因子的响应模型,具有一定的适用性。

[关键词] 沙棘;气孔导度;光合速率;环境因子;气孔模拟

[中图分类号] S793.601 [文献标识码] A

Characteristics and quantitative simulation of photosynthetic rate and stomatal conductance on *Hippophae rhamnoides* L. in loess Hilly Region

LI Hong-sheng^{1a,1b}, LIU Guang-quan^{1b,2}, CHEN Cun-gen^{1b}, WANG Hong-zhe^{1b}, XU Huai-tong^{1a}, ZHOU Hai-guang²

(1 a College of Resources and Environment, b College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China;
 2 International Research and Training Center on Erosion and Sedimentation, Beijing 100044, China)

Abstract: [Objective] The dynamic characteristics and the relationship between stomatal conductance and photosynthetic rate were studied to develop a leaf stomatal conductance model for Hippophae rhamnoide L. in Loess Hilly Region. [Method] Based on field measurements of stomatal conductance and photosynthesis data of Li-6400 portable photosynthesis system, the relationship between Pn, Gs and Ci was analyzed. And the Ball-Berry model and a nonrectangular hyperbolic photosynthesis model were employed to simulate the relationship of stomatal conductance of Hippophae rhamnoide L. [Result] The results showed that the diurnal variation of Pn and Gs was a smooth two-peak curve on sunny day, and Gs increased rapidly around 9:00 A. M., followed by marked decrease until about 15:00 P. M. The Pn associated with Gs, exhibited and sustained oscillations hours after sunrise, and reached a peak at about the diurnal

^{← [}收稿日期] 2008-06-12

[[]基金项目] 国家"十一五"科技支撑计划项目(2006BAD03A0308);国际泥沙研究培训中心重大项目(05-01-02)

[[]作者简介] 李红生(1981-),男,河南新乡人,博士,主要从事植物生理生态学研究。E-mail;lihongsheng521@163.com

[[]通信作者] 刘广全(1964-),男,陕西商南人,教授级高级工程师,博士生导师,主要从事陆地生态系统结构、功能及其动态研究。 E-mail:gqliu@iwhr.com

course simultaneously. Pn had positively significant partial correlation with Gs, but negatively significant partial correlation with Ci. The partial correlation coefficients between Pn and Ci were higher than those between Pn and Gs in different months, but Ci didn't sustain significant correlation with Gs. The relationship between Ci and Gs wasn't significant in August. It also showed that there was a linear relationship between Gs and Pn, and a nonrectangular hyperbolic relationship between Pn and PAR ($R^2 = 0.8954, R^2 =$ 0.9902). [Conclusion] The result suggests that the non-stomatal factor was the main limiting element in the leaf senescence periods; thus, a leaf Stomatal Conductance model was constructed by coupling a Ball-Berry model and a nonrectangular hyperbolic photosynthesis model for Hippophae rhamnoide L. in Loess Hilly Region.

Key words: *Hippophae rhamnoides* L. ;stomatal conductance;photosynthetic rate;environmental factor;stomatal conductance simulation

植物光合作用是生态系统生产力形成与演化的基础,也是全球碳循环及其他物质循环的一个最重要环节。气孔既是植物光合作用吸收空气中 CO₂的入口,也是水蒸气逸出叶片的主要出口,是连接生态系统碳循环和水循环的结合点^[1-2]。

迄今为止,已开展了大量的从保卫细胞到叶片, 从单株植物到冠层与植物光合、气孔运动有关的试 验研究,如 Cowan 等^[3]和 Farquhar 等^[4] 详尽描述 了气孔的功能,提出了气孔限制值分析的观点,为从 光合机理上模拟植物生产力动态,以探讨土壤-植 被-大气连续系统(SPAC)的水分运输和水分平衡状 况奠定了基础。Jarvis 等^[5]、Ball^[6]、Leuning^[7]研究 了气孔导度与环境因子和生理因子的关系,认为气 孔是控制光合和蒸腾等作用的关键因素,并建立了 Jarvis 和 Ball 气孔导度模型。Mott 等[8]、Hubbard 等^[9]以及 Monteiro 等^[10]、Paoletti 等^[11]也对气孔运 动、光合速率与环境因子的关系进行了深入研究。 我国一些学者,如于强等^[12]、关义新^[13]、许大全^[14]、 娄成后等[15]、邢世岩[16]、于贵瑞等[17-18]也对不同植 物光合速率、气孔导度的日变化特征和环境因子对 光合速率及气孔导度的影响进行了研究。这些研究 结果均表明,气孔控制着光合作用和蒸腾作用两个 相互耦合的过程,气孔导度与光合速率的耦合关系 是理解陆地生态系统碳循环和水循环及其耦合关系 的基础。因此,基于对植物气孔行为环境控制机制 的理解,模拟植物单叶特别是群落顶部受光叶片的 光合作用和气孔导度对环境变量的响应,是构建不 同尺度陆地生态系统碳循环和水循环模型的关键。

目前,针对沙棘光合、气孔导度的研究,大多集中 在其日季动态特征及主导环境因子的影响方面^[19-22], 尚未见关于沙棘叶片光合特性及气孔导度模拟模型 的研究报道。为此,本试验以黄土丘陵沟壑区沙棘植 被为研究对象,试图基于沙棘叶片光合、气孔导度及 其环境因子的野外观测,分析光合作用与气孔导度的 耦合关系,建立干旱条件下的气孔导度模型,为黄土 丘陵沟壑区植被建设中植物种的选择及其植被表面 能量与水分交换动态的研究提供科学依据。

1 材料与方法

1.1 试验区自然概况

研究区位于陕西省吴起县东北部长城乡,地理 位置为 E 108°22′和 N 37°21′,海拔 1 520 m,属黄土 高原典型梁状丘陵沟壑腹地。该区属温带大陆性季 风气候,平均降雨量 300~400 mm,降雨量年际差 异较大,年内分布不均。年平均气温 7.8 ℃,平均无 霜期 120~140 d。土壤为淡灰绵土,质地为砂质壤 土,石灰反应强烈,碳酸钙含量在 130 g/kg 左右,土 壤 pH 值约为 8.5。

1.2 试验材料与方法

供试沙棘(Hippophae rhamnoidesL.)林为 1999年人工栽植的实生苗,整地方式为水平阶,株 行距为 2 m×0.50 m,位于山地西坡(半阳坡)。于 2007-07-13、08-15、09-13 采用 Li-6400 便携式光合 仪对沙棘生长期光合气体交换参数进行测定。测定 于晴朗天气的 07:00~18:00 进行。测定时选择生 长良好植株上的成熟健康叶片,每株 3 片叶,每片 3 次取值,重复 3 株,每 1 h 测定 1 次。测定参数为光 合速率(Pn)、蒸腾速率(Tr)、光合有效辐射(PAR)、 气孔导度(Gs)、叶面温度(Tl)、气温(Ta)、大气相对 湿度(hs)、胞间 CO₂ 浓度(Ci)等。

采用 Li-6400-02B 红蓝光源提供的不同光合有 效辐射:2 000,1 600,1 200,1 000,800,600,400, 200,100,50,20 和 0 μmol/(m² • s),此时空气 CO₂ 浓度为 380 μmol/mol,温度为 30 ℃,相对湿度为 50%,利用 Li-6400 自动"light-cure"曲线测定功能 测定不同光强所对应的光合速率。

(3)

1.3 模型描述----气孔导度与光合速率的耦合关系

气孔导度模型的建立,为从光合机理上模拟植 被生产力动态以及探讨土壤-植被-大气连续系统 (SPAC)的水分运输和水分平衡状况奠定了理论基 础。迄今为止,有关气孔行为的生理机制尚不完全 清楚,但在叶片气孔导度对环境因子响应试验的基 础上,已建立了一系列经验性或半经验、半机理性的 气孔导度模型^[5-6,23-29]。这些模型是基于不同的假设 条件,由不同的数值方程所构成,在模型复杂程度上 有很大差异。其中,以Ball^[6]为代表建立的气孔导度 与光合速率和环境因子的线性相关模型Ball-Berry, 是一种被广泛采用的半经验性气孔导度模型,其依据 稳定状态下,当叶片表层 CO₂ 浓度和大气湿度不变 时,气孔导度同光合速率具有线性关系。Ball^[6]提出 的线性气孔导度模型,即 Ball-Berry 模型为:

$$Gs = m \, \frac{Pn \, \cdot \, h_s}{Cs} + g_0 \, . \tag{1}$$

式中:Gs 为气孔导度, $mol/(m^2 \cdot s)$; Pn 为光合速 率, $\mu mol/(m^2 \cdot s)$; h_s 和Cs 分别为大气相对湿度和 叶表面的 CO₂ 浓度, $Pn \cdot hs/Cs$ 被称为气孔导度指 数; m 和 g_0 为经验系数, 其中 g_0 为光补偿点处的 Gs 值。由于式(1)中的 Pn 也是 1 个未知量, 因而 Ball-Berry 模型需要与叶片的光合模型相耦合, 才 能得到相应的气孔导度。

植物叶片光合作用与光合有效辐射的关系最为 密切。因此,可以采用光合作用的非直角双曲线模 型,计算沙棘叶片的光合速率。该模型是基于叶片光 合速率随光强变化呈非直角双曲线型变化的特征来 模拟叶片的光合作用,其优点是该模型仅需要最大光 合速率、表观量子效率和光响应曲线曲率3个参数, 即可计算叶片光合速率 Pn,不仅模拟效果较好,而且 便于应用。利用这3个参数计算 Pn 的公式为:

$$Pn = \frac{\alpha I + Pn_{\max} - \sqrt{(\alpha I + Pn_{\max})^2 - 4\alpha Ik Pn_{\max}}}{2k} - R_d$$
(2)

式中: α 为表观量子效率, μ mol/mol;I为光合有效 辐射强度, μ mol/(m² • s); Pn_{max} 为最大光合速率, μ mol/(m² • s);k为曲率; R_d 为光下呼吸速率, μ mol/(m² • s)。

将(2)式带入(1)式,可得:

$$Gs = \frac{mn_s}{Cs} \bullet \\ \left[\frac{\alpha I + Pn_{\max} - \sqrt{(\alpha I + Pn_{\max})^2 - 4\alpha Ik Pn_{\max}}}{2k} - R_d\right] + g_0 \circ$$

由式(3)知,叶片气孔导度(Gs)可通过环境变量 直接计算。

1.4 数据统计与方法

试验数据采用 SAS 统计软件包和 Origin 科技 绘图软件进行处理。

2 结果与分析

2.1 沙棘叶片光合速率和气孔导度的日变化特征

图 1 为 2007-07-13(晴天)沙棘叶片气孔导度和 光合速率的日变化情况。由图 1 可知,从 07:00 开 始,随着光照的增强及气温的升高,光合速率(*Pn*) 逐渐增大,一天中的第 1 个峰值约在 10:00 左右出 现,峰值为 23.59 µmol/(m² • s);10:00 以后,相对 湿度下降,沙棘叶内外水气压差增大,蒸腾急剧上 升,沙棘体内水分出现亏缺,*Pn* 逐渐减弱;14:00 左 右出现低谷值,即出现"午休"现象,此时 *Pn* 仅为第 1 次峰值的 41.95%;14:00~16:00 *Pn* 又逐渐升 高,于 16:00 左右形成 1 个小波峰,峰值为 15.00 µmol/(m² • s),之后 *Pn* 迅速下降。比较 2 个峰值 发现,下午的峰值仅为上午峰值的 63.56%,一天中 *Pn* 的极差值达 8.59 µmol/(m² • s)。以上分析表 明,沙棘的光合作用进程存在明显的"午休"现象。

Hippophae rhamnoides L.

由图 1 还可看出,从 07:00 开始,随光照的不断 增强,气孔受光线影响而张开,气孔导度不断增大, 于 9:00 左右达第 1 峰值(0.455 6 mol/(m² • s)), 略早于叶片 *Pn* 第 1 个峰值出现的时间。在 11:00~14:00,气温进一步升高,受高温刺激,气孔 逐步闭合,*Gs* 逐渐降低,在 14:00 左右形成 1 个低 谷,出现"午休"现象;14:00~15:00 气温逐渐降低, Gs 又逐渐升高,于 15:00 左右形成第 2 个峰值,峰 值为 0.153 mol/(m² • s)。

2.2 沙棘叶片光合速率与气孔导度的关系

于 2007-07-09 对沙棘叶片光合速率(Pn)、气孔 导度(Gs)、胞间 CO₂ 浓度(Ci)、空气 CO₂ 浓度(Ca) 进行了同步测定,分析了沙棘叶片气孔导度与光合 速率的关系。图 2 结果表明,二者间存在很好的线 性关系,呈极显著正相关($R^2 = 0.8954, P < 0.0001, n = 269$)。气孔开启的程度直接影响进入 到叶片内部参与光合作用的 CO₂ 浓度,从而影响光 合作用速率,叶片光合速率随气孔导度的增大而升 高^[29]。由图 2 可知,随气孔导度的增加,沙棘叶片 光合速率的增加逐渐趋于缓慢直至平稳,表明沙棘 叶片光合能力的下降有一个从气孔限制为主到非气 孔限制为主的变化过程。

进一步对 Gs、Ci 与 Pn 之间的关系进行相关分析。由表 1 可知, Pn 与 Gs、Ci 的简单相关性在 8、9

月份均达显著或极显著水平,其中 Pn 与 Gs 之间呈正 相关,而与 Ci 间呈负相关。表明沙棘叶片在衰老过 程中,随着 Pn 降低 Gs 下降,Ci 上升,提示沙棘叶片 衰老期间非气孔因素是光合作用的主要限制因子。

in Hippophae rhamnoides L.

表 1 不同月份沙棘叶片气孔导度(Gs)、胞间 CO2 浓度(Ci)与光合速率(Pn)的相关及通径分析

Table 1 Correlation analysis between Gs and Ci and Pn of leaves in Hippophae rhamnoides L. in different months

月份 Month	参数 Parameter	简单相关系数 Simple correlation		偏相关系数 ^① Partial correlation		对 Pn 的直接效应 ^② Standardized
		Ci	Pn	Ci	Pn	estimate
7	Ci	_	0.201 01	_	0.096 22	0.082 18
	Gs	0.829 91**	0.467 69**	0.390 62**	0.778 10**	0.926 31 * *
8	Ci	_	-0.420 37**	_	-0.57672**	-0.556 56**
	Gs	0.204 98	0.429 28**	0.407 05 * *	0.370 29**	0.540 98**
9	Ci	—	-0.520 12**	—	-0.868 83**	-0.495 16**
	Gs	0.514 44*	0.272 07*	0.594 64**	0.351 52**	0.399 15**

注:①计算 Gs、Ci 和 Pn 两两之间的偏相关系数时,均设定空气 CO2 浓度(Ca)为偏变量;②进行通经分析时,除 Gs、Ci 外,Ca 也作为一个因子考虑。

Note: ① Enact Ca is devised as the partial variable when calculating the partial correlations of Gs, Ci and Pn. ②Ca is the third factor to be considered besides Gs and Ci in the correlation analysis.

由表1可见,当 Pn和Ca固定时,不同月份Gs和Ci之间的偏相关性均达极显著水平,表明气孔导度下降能够极显著降低细胞间隙的CO₂浓度,不利于细胞间隙和光合羧化位点之间CO₂浓度梯度的形成,从而对光合作用构成限制。但根据同一组试验数据计算出的Gs和Ci之间的简单相关性,在8月表现并不显著,表明二者之间的相关性并不十分稳定,说明Ci受到多种因素的影响,Gs可能不是决定Ci高低的最主要因素。

从表1还可以看出,当Gs和Ca固定时,8、9月 沙棘叶片Ci与Pn偏相关系数的绝对值均高于Gs 与Pn之间的偏相关系数,也说明非气孔因素是影 响光合底物供应和光合速率表观的主要因素,其作 用程度大于气孔因素。通径分析结果也证明,气孔 因素(Gs)与非气孔因素(Ci)对光合作用均有显著的 直接效应,其中非气孔因素对光合作用的直接效应 大于气孔因素。

2.3 沙棘叶片光合速率与光合有效辐射变化的 响应

光响应曲线反映了植物光合速率随光照强度增 减的变化规律。由图 3 可知,当 PAR 为 0~200 μ mol/(m² • s)时,*Pn* 随 PAR 的增大几乎呈直线上 升趋势; PAR 高于 200 μ mol/(m² • s)以后,*Pn* 呈 缓慢上升趋势; 当 PAR 达到 600 μ mol/(m² • s)以 后,*Pn* 上升的幅度较小,直至达到最大光合速率,即 光饱和光合速率(*Pn*_{max}),其变化符合非直角双曲线 规律。

利用沙棘叶片光合作用光响应曲线的观测数据,对光合速率与光合有效辐射进行非直角双曲线 性拟合。结果表明,沙棘叶片的光合速率与光合有 效辐射之间存在着很好的非直角双曲线关系($R^2 = 0.9902$)。沙棘的光补偿点为29.7 μ mol/(m² • s),远高于典型的阳生植物(9~27 μ mol/(m² • s));其光饱和点为601 μ mol/(m² • s),在典型阳生植物的光饱和点范围(360~900 μ mol/(m² • s)),并且其表观光量子效率(α)为0.0353 μ mol/mol,较自然条件下一般植物的 α (0.03~0.07 μ mol/mol)低,表明沙棘可能在较弱的光照环境下,利用光的能力较差,即耐阴能力较弱。

2.4 沙棘叶片气孔导度的数值模拟

依据随机选取的野外同步观测的光合有效辐射、空气温度、水汽压亏损、沙棘叶片气孔导度的瞬时数值,以及上述气孔导度 Ball-berry 和非直角双曲线光合模型,使用 SAS 软件的非线性参数估算进行曲线拟合,采用麦夸特法(Levenberg-Marquardt)和通用全局优化法确定参数,其结果见表 2。

表 2 沙棘叶片气孔导度模型和非直角双曲线光合模型参数的拟合结果

Table 2 Simulated parameters of Ball-Berry model and Non-rectangular hyperbola model for Hippophae rhamnoides L.

模型 Modeling	参数拟合值 Simulated value of parameter	相关系数 r Correlation coefficient			
Ball-Berry 模型 Ball-Berry model	$m = 0.08165, g_0 = 0.0131$	0.970 3			
非直角双曲线光合模型 Non-rectangular hyperbola model	$Pn_{\max} = 23.3, \alpha = 0.0304, k = 0.0116, R_d = 1.48$	0.994 8			
于是,以 Ball-berry 和非直角双曲线光合模型 为基础的沙棘叶片气孔导度模型可表示为:					
0.091 GEL [$0.000 (II$) $0.000 (II$					

$$G_{s} = \frac{0.081\ 65h_{s}}{Cs} \left[\frac{0.030\ 4I + 23.3 - \sqrt{(0.030\ 4I + 23.3)^{2} - 0.032\ 87I}}{0.023\ 2} - 1.48 \right] + 0.0131_{\circ}$$
(4)

利用沙棘旱区的气象资料(大气相对湿度 hs、 光合有效辐射强度 I 和叶表面 CO₂ 浓度 Cs)及未参 与模型参数拟合的沙棘叶片气孔导度实测资料,对 所建模型进行验证。图 4 为沙棘叶片气孔导度模拟 值与观测值的关系,其截距为0的回归直线斜率为 0.762,方程决定系数 R²=0.8561,表明本研究建 立的模型能较好地模拟沙棘叶片气孔导度的变化。

根据比较验证的结果,利用 Ball-berry 和非直 角双曲线光合模型所建立的沙棘叶片气孔导度模 型,模拟计算了沙棘叶片气孔导度对光合有效辐射 变化的响应,其结果见图 5。由图 5 可见,气孔导度 的模拟值与实测值间十分接近。

3 结论与讨论

气孔既是植物光合作用时吸收空气中 CO₂ 的 入口,也是水蒸气逸出叶片的主要出口^[30],因此其 在调节植物的碳同化和水分散失的平衡中起着关键 作用,是土壤-植被-大气连续体间(SPAC)物质与能 量交换的重要调控通道。本研究结果表明,在气温 高、相对湿度小而阳光充足的夏季晴天,沙棘叶片光 合速率的日变化呈一条不对称的双峰曲线,上、下午 各有 1 个高峰(峰值分 别为 23.59 和 15.00 μmol/(m² • s)),中午有 1 个低谷。气孔导度(Gs) 的日变化趋势与光合速率(Pn)的变化基本一致。 表明沙棘在环境 PAR 与 Ta 尚未达到高峰时就达 到了一天中光合作用的高峰,而在中午和下午环境 温度高时关闭气孔,从而最大程度地节约水分,提高 了抗旱能力。

光合作用受到光合羧化位点处底物 CO₂ 浓度 和光合器官同化 CO₂ 效率两方面的制约^[14]。在大 气 CO₂ 浓度下,CO₂ 由叶片向羧化位点的扩散能力 决定了羧化位点处的 CO₂ 浓度。CO₂ 在扩散过程 中受到叶界面阻力、气孔阻力和叶肉阻力 3 个阻力 的影响,其中后两者是影响 CO₂ 扩散的主要因素。 由于气孔导度降低即气孔阻力升高,致使光合作用 所需底物 CO₂ 的供应受到限制,并由此导致光合速 率下降,构成气孔限制。由于叶肉细胞间隙和细胞 内部 CO₂ 的扩散能力下降(叶肉导度降低即叶肉阻 力升高)以及光合器官羧化能力的降低,导致光合速 率下降,则构成了光合作用的非气孔限制。本研究

中,对不同月份沙棘叶片气孔导度(Gs)、胞间 CO₂ 浓度(Ci)与光合速率(Pn)的相关分析表明:(1)当 Pn和Ca固定时,Gs和Ci之间的相关性并不稳定, 说明Ci受到多种因素的影响,Gs可能并不是决定 Ci 高低的最主要因素。这是因为,虽然 Gs 下降可 以降低Ci,但如果与此同时叶肉细胞中CO₂的传导 能力和 Pn 以更快的速度下降,那么即使 Gs 很低, 也会造成细胞间隙的 CO₂ 供过于求,表现为 Ci 上 升。(2) Pn 和 Gs 之间呈正相关关系, 而与 Ci 呈负 相关关系,表明在沙棘叶片衰老过程中,与 Pn 下降 相伴的是Gs的下降和Ci的上升。且根据 Farquhar 等[4]提出的理论,可以认为沙棘植物叶片衰老期间 非气孔因素,是光合作用的主要限制因子。(3)当 Gs和Ca固定时,Ci的高低主要决定于非气孔因 素,Ci与Pn之间的偏相关系数或Ci对Pn的直接 通经系数,能够反映非气孔因素与光合作用的直接 关系。当Ci和Ca固定时,Gs与Pn之间的偏相关 系数或 G_s 对 P_n 的直接通经系数,能够反映气孔因 素与光合作用的直接关系。8、9月份沙棘植物叶片 Ci与Pn的偏相关系数绝对值均高于Gs与Pn,说 明非气孔性因素是影响沙棘叶片光合底物供应和光 合速率表观的主要因素。

本研究结果表明,沙棘叶片气孔导度与光合速 率之间存在着很好的线性关系,二者间极显著相关 (R²=0.8954,P<0.0001,n=269),表明沙棘叶片 气孔导度与光合速率的关系符合 Ball-Berry 模型的 理论基础。另外,光响应曲线分析表明,沙棘叶片光 合速率与光合有效辐射的关系,可用非直角双曲线 光合模型描述。为此,本研究提出了基于 Ball-Berry 模型与非直角双曲线光合模型联合求解沙棘叶 片气孔导度的模拟方法,对改进的气孔导度模型进 行验证比较发现,该模型能较好地模拟沙棘叶片气 孔导度的变化,具体计算方程为:

$$Gs = \frac{0.081\ 65h_s}{Cs} \left[\frac{0.030\ 4I + 23.3 - \sqrt{(0.030\ 4I + 23.3)^2 - 0.032\ 87I}}{0.032\ 2} - 1.48 \right] + 0.0131_{\circ}$$

[参考文献]

[1] 蒋高明. 植物生理生态学 [M]. 北京: 高等教育出版社, 2004: 93-95.

Jiang G M. Plant eco-physiology [M]. Beijing: Higher Education Press, 2004:93-95. (in Chinese)

[2] 潘瑞炽. 植物生理学 [M]. 5 版. 北京:高等教育出版社,2004: 18-20.

Pan R Z. Plant physiology [M]. 5th Edition. Beijing: Higher

Education Press, 2004:18-20. (in Chinese)

- [3] Cowan I R, Farquhar G D. Stomatal function in relation to leaf metabolism and environment [J]. Symposia Society for Experimental Biology, 1977, 31:471-505.
- [4] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis [J]. Ann rev Plant physiology, 1982, 33: 317.
- [5] Jarvis P G, Morison J I L. The control of transpiration and photosynthesis by the stomatal [M]// Jarvis P G, Mansfield T A. Stomatal physiology, society for experimental biology; seminar series 8. Cambridge: University Press, 1981:247-279.
- [6] Ball J T. An analysis of stomatal conductance [M]. Stanford:

Stanford University Press, 1988.

- [7] Leuning R. A critical appraisal of a combined stomatal-photosynthesis model for C₃ plants [J]. Plant, Cell and Environment, 1995, 18; 339-355.
- [8] Mott K A, Buckley T N. Patchy stomatal conductance: emergent collective behavior of stomata [J]. Plant Science, 2000, 5 (6): 258-262.
- [9] Hubbard R M, Ryan M G, Stiller V, et al. Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine [J]. Plant, Cell and Environment, 2001,24(1):113-121.
- [10] Monteiro J A F, Prado C H B A. Apparent carboxylation efficiency and relative stomatal and mesophyll limitations of photosynthesis in an evergreen cerrado species during water stress [J]. Photosynthetica, 2006, 44(1):39-45.
- [11] Paoletti E, Nali C, Lorenzini G. Early responses to acute ozone exposure in two fagus sylvatica clones differing in xenomorphic adaptations: photosynthetic and stomatal processes, membrane and epicuticular characteristics [J]. Environ Monit Assess, 2007, 128, 93-108.
- [12] 于 强,谢贤群. 植物光合生产力与冠层蒸散模拟研究进展
 [J]. 生态学报,1999,19(5):744-753.
 Yu Q,Xie X Q. Andances in simulation of plant photosynthetic productivity and canopy evapotranspiratio [J]. Acta Ecologica Sinica,1999,19(5):744-753. (in Chinese)
- [13] 关义新.水分胁迫下植物叶片光合的气孔和非气孔限制[J]. 植物生理学通讯,1995,31(4):293-297.

Guan Y X. The photosynthetic stomatal and nonstomatal limitation of plant leaves under water stress [J]. Plant Physiology Communications,1995,31(4):293-297. (in Chinese)

[14] 许大全.光合作用气孔限制分析中的一些问题 [J]. 植物生理
 学通讯,1997,33(4):241-244.
 Xu D Q. Some problems in stomatal limitation analysis of pho-

tosynthesis [J]. Plant Physiology Communications, 1997, 33 (4):241-244. (in Chinese)

[15] 娄成后,王学臣.作物产量形成的生理学基础 [M].北京:中 国农业出版社,2000:114-115.

Lou C H, Wang X C. Crop yields physiology [M]. Beijing: Chinese Agriculture Press,2000:114-115. (in Chinese)

[16] 邢世岩.叶籽银杏叶的解剖结构及气孔特性 [J].林业科学, 2007,43(10):34-40.

Xing S Y. Anatomical structure and stomatal characteristics on the leaf of *Ginkgo biloba* var. *epiphylla* [J]. Scientia Silvae Sinica,2007,43(10):34-40. (in Chinese)

[17] 于贵瑞,王建林,王伯伦,等.北方粳稻光合速率、气孔导度对 光强和 CO₂ 浓度的响应 [J]. 植物生态学报,2005,29(1):16-25.

> Yu G R, Wang J L, Wang B L. Response of photosynthetic rate and stomatal conductance of rice to light intensity and CO₂ concentration in Northern China [J]. Acta Phytoecologica Sinica,2005,29(1):16-25. (in Chinese)

[18] 于贵瑞.光和CO2作用下C3和C4作物气孔导度-光合速率耦

合关系的差异 [J]. 华北农学报,2008,23(1):71-75.

Yu G R. Variations in relationship between stomotal conductance and photosynthesis rate in C_3 and C_4 crops under different light and CO_2 conditions [J]. Acta Agriculturae Boreali-Sinica,2008,23(1):71-75. (in Chinese)

- [19] 阮成江,李代琼. 黄土丘陵沙棘气孔导度及影响因子 [J]. 西 北植物学报,2001,21(6):1078-1084.
 Ruan C J,Li D Q. Transpiration characteristics and influence factors of *Hippophae rhamnoides* L. in Loess Hilly Region
 [J]. Acta Botanica Boreali-occidentalia Sinica,2001,21(6): 1078-1084. (in Chinese)
- [20] 孟函宁,刘明国,刘青柏. 阜新地区不同沙棘品种光合及蒸腾特性的研究[J]. 沈阳农业大学学报,2007,38(3):345-348.
 Meng H N,Liu M G,Liu Q B. Studies on the photosynthetic and transpiration characteristics of different *Hippophae rh-amnoides* L. varieties in Fuxin [J]. Journal of Shenyang Agricultural University,2007,38(3):345-348. (in Chinese)
- [21] 刘广全,郭孟华. 沙棘干物质形成的光合作用机制 [J]. 国际 沙棘研究与开发, 2008,6(1):21-26.
 Liu G Q,Guo M H. On photosynthetic mechanism of *Hippophae rhamnoides* L. in the Loess Plateau [J]. The Global Seabuckthorn Research and Development, 2008,6(1):21-26. (in Chinese)
- [22] 唐道锋,贺康宁,朱艳艳. 白榆沙棘光合生理参数与土壤含水 量关系研究 [J]. 水土保持研究,2007,14 (1):230-233.
 Tang DF,He K N,Zhu Y Y. Study on the relation between the photosynthetic physiological properties of *Ulmus pumila* and *Hippophae rhamnoides* and soil water content [J]. Research of Soil and Water Conservation,2007,14(1):230-233. (in Chinese)
- [23] Carlson T N. Modeling stomatal resistance: an overview of the 1989 work shop at the Pennsylvania State University [J]. Agricultural and Forest Meteorology, 1991, 54:103-106.
- [24] 王玉辉,周广胜. 羊草叶片气孔导度对环境因子的响应模拟
 [J]. 植物生态学报,2000,24(6):739-743.
 Wang Y H,Zhou G S. Analysis and quantitative simulation of stomatal conductance of *A nenrolepidium chinese* [J]. Acta Phytoecologica Sinica,2000,24(6):739-743. (in Chinese)
- [25] 常学礼. 樟子松针叶气孔运动与蒸腾强度关系研究 [J]. 中国 沙漠,1995,15(3):241-243.
 Chang X L. Study on the relationship between stomatal movement and transpiration rate of *Mongolia scotch pine* [J]. Journal of Desert Research,1995,15(3):241-243. (in Chinese)
- [26] 王玉辉.羊草叶片气孔导度特征及数值模拟[J].应用生态学报.2001,12(4):517-521.

Wang Y H. Characteristics and quantitative simulation of stomatal conductance of *Aneurole pidium chinense* [J]. Chinese Journal of Applied Ecology, 2001, 12 (4): 517-521. (in Chinese)