

欢迎投稿 http://www.aed.org.cn

鸡血藤药渣对废水中Cu²⁺的吸附行为

曹阳,杨燕,刘若琪,曹衬衬,李凤,李艾莲,徐小逊

引用本文:

曹阳,杨燕,刘若琪,曹衬衬,李凤,李艾莲,徐小逊. 鸡血藤药渣对废水中Cu²⁺的吸附行为[J]. 农业资源与环境学报, 2022, 39(4): 798-805.

在线阅读 View online: https://doi.org/10.13254/j.jare.2021.0276

您可能感兴趣的其他文章

Articles you may be interested in

掺Fe(Ⅱ)羟基磷灰石对水溶液中Pb(Ⅱ)吸附性能研究

李辉, 江群, 姜思盟, 曲建华, 姜昭, 张颖 农业资源与环境学报. 2022, 39(4): 698-706 https://doi.org/10.13254/j.jare.2021.0211

高效液相色谱法测定多效唑在海南芒果园土壤的吸附特征

吴东明,李怡,邓晓,张文,武春媛,李勤奋 农业资源与环境学报. 2020, 37(5): 777-783 https://doi.org/10.13254/j.jare.2019.0386

生物改性玉米秸秆处理含铜废水的研究

宋晓晓, 任滨侨, 赵路阳, 金玉, 欧阳凤菊 农业资源与环境学报. 2019, 36(3): 337-343 https://doi.org/10.13254/j.jare.2018.0155

pH对生物质炭吸附诺氟沙星和磺胺甲恶唑的影响

张亚茹, 张英, 史祥利, 刘莹, 刘宪斌, 卢少勇, 毕斌, 万正芬, 杨勇 农业资源与环境学报. 2020, 37(4): 552-561 https://doi.org/10.13254/j.jare.2019.0230

小麦秸秆生物质炭对碱性土壤中油菜生长和镉吸收的影响

任心豪,陈乔,李锦,贺飞,吴思沛,郭军康 农业资源与环境学报. 2021, 38(1): 119-126 https://doi.org/10.13254/j.jare.2020.0012

关注微信公众号,获得更多资讯信息

农业资源与环境学报 2022, 39(4): 798-805

Journal of Agricultural Resources and Environment

曹阳,杨燕,刘若琪,等. 鸡血藤药渣对废水中 Cu²⁺的吸附行为[J]. 农业资源与环境学报, 2022, 39(4): 798-805. CAO Y, YANG Y, LIU R Q, et al. Adsorption of Cu²⁺ from wastewater by a residue of production of a Chinese medicine from *Spatholobus suberectus* Dunn.[J]. *Journal of Agricultural Resources and Environment*, 2022, 39(4): 798-805.

鸡血藤药渣对废水中 Cu²⁺的吸附行为

曹阳¹,杨燕¹,刘若琪¹,曹衬衬¹,李凤¹,李艾莲¹,徐小逊^{1,2*} (1.四川农业大学环境学院,成都 611130; 2.四川省土壤环境保护重点实验室,成都 611130)

摘 要:采用废弃中药渣鸡血藤(Spatholobus suberectus Dunn.,SSD)为生物吸附剂对废水中铜离子(Cu²⁺)进行吸附,探讨吸附性能和吸附机理,为废水中Cu²⁺的去除和中药渣的资源化利用提供参考依据。通过吸附性能试验探讨了吸附剂剂量、pH值、初始离子 浓度、温度、时间和共存阳离子对SSD吸附Cu²⁺的影响,根据吸附前后SSD的形貌特征,探讨其对Cu²⁺的吸附机理。结果表明,SSD 对Cu²⁺的吸附速率较大,在30 min时吸附达到平衡。增加吸附剂剂量、pH值和吸附时间均会促进SSD对Cu²⁺的吸附,共存阳离子 会在一定程度上抑制Cu²⁺的吸附。Sips等温模型能更好地描述不同温度下SSD对Cu²⁺的吸附过程,吸附特征是Langmuir和 Freundlich模型的结合。SSD对Cu²⁺的吸附符合准二级动力学方程,表明化学吸附是反应的限速步骤。SSD对Cu²⁺的吸附机理包 括离子交换、络合和静电吸引。研究表明,废弃中药渣鸡血藤可用于废水中Cu²⁺的去除。

关键词:鸡血藤;中药渣;吸附;铜离子

中图分类号:X703 文献标志码:A 文章编号:2095-6819(2022)04-0798-08 doi: 10.13254/j.jare.2021.0276

Adsorption of Cu²⁺ from wastewater by a residue of production of a Chinese medicine from *Spatholobus* suberectus Dunn.

CAO Yang¹, YANG Yan¹, LIU Ruoqi¹, CAO Chenchen¹, LI Feng¹, LI Ailian¹, XU Xiaoxun^{1,2*}

(1.School of Environment, Sichuan Agricultural University, Chengdu 611130, China; 2. Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu 611130, China)

Abstract: The aim of this study is to examine the efficacy of a byproduct of production of a Chinese medicine from *Spatholobus suberectus* Dunn. (SSD) as an adsorbent to remove Cu^{2+} from polluted water. These studies of adsorption capacity and adsorption mechanism offer insights into a new means for Cu^{2+} removal from contaminated water, and enhance resource utilization related to production of a Chinese medicine. Variables affecting Cu^{2+} removal efficiency, including SSD dose, pH value, initial ion concentration, temperature, time, and coexisting cations, were investigated by adsorption performance tests. The results showed the adsorption rate of SSD for Cu^{2+} was fast, and adsorption reached equilibrium after 30 min. The Cu^{2+} adsorption mechanism was addressed by examining SSD morphological characteristics before and after adsorption. Cu^{2+} adsorption by SSD was improved with increasing SSD dose, pH value, and time, while coexisting cations inhibited Cu^{2+} removal to a certain degree. The Cu^{2+} adsorption data fit the Sips model well, suggesting that Cu^{2+} adsorption on SSD occurs by a combined Freundlich–Langmuir model. The Cu^{2+} removal mechanism includes ion exchange with Ca^{2+} and Mg^{2+} , chelating with SSD surface functional groups, and electrostatic attraction between cationic Cu^{2+} and negative charges on SSD. In conclusion, SSD can be used for Cu^{2+} removal from wastewater.

Keywords: Spatholobus suberectus Dunn.; Chinese medicine residue; adsorption; Cu²⁺

收稿日期:2021-05-05 录用日期:2021-06-23

作者简介:曹阳(1996一),女,四川遂宁人,硕士研究生,从事农林废弃物资源化研究。E-mail:1219485273@qq.com

^{*}通信作者:徐小逊 E-mail:xuxiaoxun2013@163.com

基金项目:四川省科技计划重点研发项目(2021YFN0018);四川省环境保护科技计划项目(2018HB30)

Project supported: Key Research and Development Projects of Sichuan Province (2021YFN0018); Environmental Protection Science and Technology Projects of Sichuan Province(2018HB30)

随着我国工业的快速发展,大量含重金属的废水 也随之产生。黄铜制造、皮革鞣制和石油冶炼等行业 排放的废水中含有大量的铜(Cu),会对水环境造成 不利影响,其通过食物链进入人体,还会导致严重的 健康问题^[1]。过量的Cu对人体具有毒害作用,会造成 脑损伤以及肝脏损害,甚至诱发抑郁症和癌症等^[2]。 因此,寻求一种合理有效的方式处理废水中的Cu显 得尤为重要。

常见的废水中Cu的去除方法主要有吸附法、化 学沉淀法、电化学法、膜过滤法等。其中,吸附法具有 操作简单、效率高、适应性广等特点,被认为是去除有 毒废水的最佳技术^[3]。吸附法的核心是吸附材料的 选择,然而,目前所使用的吸附剂存在价格高昂、易二 次污染等问题。因此,筛选环保、经济、高效的吸附剂 非常必要。

近年来,一些农林废弃物,如橘子皮、废茶叶、稻 壳等,因来源广泛、生态友好、廉价易得等优点而被认 为是去除Cu的高效生物吸附剂^[4]。然而,这些材料往 往存在机械强度不足、去除效率有限等问题题。相比 之下,中草药在提取有效成分的蒸煮过程中已经过 水、酸、碱或醇的浸泡,所剩下的固体成分具备较强的 机械强度和化学稳定性[6]。据报道,我国中药渣的排 放量每年达3000万t,而其除了少部分被用来栽培食 用菌、作为饲料或制备有机肥以外,大部分被随意丢 弃,污染环境的同时又造成资源的极度浪费四。中药 渣中富含大量高分子化合物,如单宁、木质素、纤维 素、多糖等四,这些化合物表面的官能团(羟基、氨基、 醚等)能通过络合、螯合作用与重金属离子结合^[8]。 目前,已有学者使用麻黄药渣、甘草药渣和板蓝根药 渣等去除废水中的重金属和染料,均获得良好的吸附 效果[9-11]。因此,进一步挖掘广泛的中药渣资源有利 于拓宽生物吸附剂的选择范围。

鸡血藤(Spatholobus suberectus Dunn.,SSD)是我国 重要的药用植物资源,广泛分布于广东、广西和云南等 地。据报道,SSD中含有大量的原花青素(3.99%~ 8.63%)^[12],这种多酚聚合物能够有效结合重金属离子。 LEE等^[13]从SSD中分离出1个黄酮、3个异黄酮、5个黄 烷酮、2个黄酮醇和1个查尔酮,这些结构中的邻苯二 羟基可与重金属离子发生离子交换反应和络合反 应^[14]。然而,利用SSD作为吸附剂吸附废水中Cu的研 究还鲜见报道。因此,本研究拟用SSD作为吸附剂,通 过吸附性能和吸附机理分析,探讨其对废水中Cu的吸 附可行性,以期为废水中Cu的去除和中药渣废弃物的 资源化利用提供环境友好的方案。

1 材料与方法

1.1 吸附剂制备

供试鸡血藤药渣取自彭州市某制药企业。样品 经自来水和蒸馏水洗净,置于烘箱中,调节温度为 70℃后烘干至恒质量。冷却后粉碎,过65目筛(粒径 约为0.23 mm),过筛后的中药渣粉末置于干燥器中 储存备用。

1.2 静态吸附实验

称取适量制备好的鸡血藤样品于 50 mL 离心管 中,加入 30 mL 一定浓度的 Cu²⁺溶液,用 0.1 mol·L⁻¹的 NaOH或 HNO₃调节溶液 pH,密封后于(25±1)℃恒温 振荡箱中以 250 r·min⁻¹振荡一定时间后取样,过滤, 用原子吸收分光光度计测定滤液中 Cu²⁺的浓度。其 中:吸附剂剂量为 0.5~8 g·L⁻¹, pH 为 1.5~6.0,温度为 25~45 ℃,初始离子浓度为 50~400 mg·L⁻¹,吸附时间 为 1~480 min;共存离子为不同浓度(0~20 mg·L⁻¹)的 K⁺、Na⁺、Ca²⁺和 Mg²⁺。

上述每组试验重复3次,若无特别说明,吸附剂 剂量为5g·L⁻¹,pH为5,温度为25℃,初始离子浓度 为100 mg·L⁻¹,吸附时间为180 min。

1.3 材料表征方法

采用扫描电子显微镜(SEM, S-4800, Hitachi, 日本)和能谱分析仪(EDS, Bruker EDS Quantax,德国) 对吸附前后材料的尺寸分布、形貌特征、团聚程度、孔 隙大小和元素组成等进行观察。采用傅里叶变换红 外光谱仪(FTIR, Spectrum Two, PerkinElmer Inc, 美 国)分析吸附前后鸡血藤生物吸附剂特征官能团的变 化情况。采用 pH 漂移法^[15]测定吸附剂在零电荷点的 pH 值 (pH_{pze}),将 0.1 g吸附剂加入 50 mL 0.1 mol·L⁻¹ NaCl 溶液(pH 为 2~10)中,在 200 r·min⁻¹、25 ℃条件 下作用 24 h。用 0.1 mol·L⁻¹ HCl 或 NaOH 溶液调节初 始 pH 值,用 pH 计(PHS-3C, 雷磁)测定最终 pH 值, pH_{pze}是在 Δ pH=0时获得。

1.4 数据处理

利用统计软件 SPSS 19.0 对数据进行单因素方差分析,利用最小显著极差法(LSD)进行处理间多重比较(P<0.05)。数据绘图使用 Origin 9.0 软件进行。

 Cu^{2+} 的吸附去除率R(%)和平衡吸附量 $Q_e(mg \cdot g^{-1})$ 由公式(1)和公式(2)进行计算。

$$R = \frac{(C_0 - C_e)}{C_0} \times 100\%$$
(1)

— 799 —

式中: C_0 和 C_e 分别为Cu的初始离子浓度和吸附达到 平衡时的浓度,mg·L⁻¹。

$$Q_e = \frac{(C_0 - C_e) \times V}{m} \tag{2}$$

式中:V为吸附溶液的体积,L;m为吸附剂的质量,g。

2 结果与讨论

2.1 吸附剂剂量对吸附效果的影响

吸附剂投加量反映了在初始浓度和体积一定的 情况下,参与反应的物质的量,是影响吸附效果的重 要因素。Cu²⁺的去除率随着投加量的增加(0.5~8g· L⁻¹)而上升(19.74%~63.16%)(图1)。吸附剂剂量的 增加代表有效吸附位点和表面积的增加,故Cu²⁺去除 率随投加量的增加而上升。然而,SSD对Cu²⁺的吸附 量随投加量的增加呈下降趋势,降幅高达79.51%(图 1)。这是因为溶液中的吸附质含量是一定的,而吸附 剂越多,其相互之间的重叠、聚合作用越大,导致单位 吸附剂所吸附的吸附质含量减少,故吸附量降低。 WU 等四用改性活性炭吸附废水中的 Cu²⁺时也得到类 似的结果,随着活性炭吸附剂用量的增加,单位吸附 剂对Cu²⁺的吸附量降低。综合考虑溶液中Cu²⁺吸附 效果和材料的最大吸附量,本研究选择5g·L⁻¹作为最 适吸附剂剂量,此时吸附去除率为52.92%,吸附量为 $10.58 \text{ mg} \cdot \text{g}^{-1}$

2.2 溶液 pH 对吸附效果的影响

当溶液 pH值>6时,水体中的 Cu²⁺会以沉淀形式 存在^[16],故本试验在 pH值为 1.5~6.0 范围内考察不同 pH条件下 SSD 对 Cu²⁺吸附效果的影响(图 2)。随着 溶液初始 pH值由 1.5 升至 4, Cu²⁺的去除率显著提高

图中不同小写字母代表处理之间差异显著(P<0.05),下同 Different lowercase letters indicate significant differences among treatments(P<0.05). The same below

图1 吸附剂剂量对SSD吸附Cu²⁺的影响

Figure 1 Effects of adsorbent dose on Cu2+ adsorption by SSD

(P<0.05),从4.94%上升到66.15%;而随着pH值进一步增加,SSD对Cu²⁺的去除率逐渐趋于稳定并在pH值为6时达到最大值68.19%(图2b)。SSD的pH_{pz}值为4.76(图2a),表明当pH<4.76时,SSD表面被质子化从而带正电荷,会与Cu²⁺产生静电排斥,不利于Cu²⁺的去除,这是在pH值较低时Cu²⁺去除率不高的原因(图2a)。此外,pH值较低时,溶液中的H⁺会与Cu²⁺竞争SSD表面的活性位点。随着pH值的升高,溶液中的H⁺减少、OH⁻增多,Cu²⁺与SSD表面的斥力降低、引力增强,因而去除率也随之提高^[17]。考虑到实际废水的pH值以及吸附效果,选择pH为5进行后续的试验。

2.3 吸附等温线

随着平衡浓度的升高,SSD对Cu²⁺的吸附量呈先 快速增加后趋于平衡的趋势(图3)。为进一步了解 SSD对Cu²⁺的吸附特性,采用双参数模型和三参数模 型对不同温度下的吸附过程进行拟合(图3),拟合参 数见表1。不同温度下SSD对Cu²⁺的吸附均符合Sips 等温吸附模型,25、35、45 ℃下*R*²分别为0.97、0.97、 0.98,表明吸附特征是Langmuir模型和Freundlich模 型的结合。在低浓度下,SSD对Cu²⁺的吸附由扩散控 制,而在高浓度下是具有饱和值的单分子层吸附, MOHAN等^[18]用生物炭吸附废水中的Cr⁶⁺时也发现,

图2 零电荷点的pH值(a)和初始pH对SSD吸附Cu²⁺的影响(b) Figure 2 Plot of zero electric charge(a) and the effect of initial pH on Cu²⁺ adsorption by SSD(b)

http://www.aed.org.cn

Sips等温线模型对实验数据的拟合效果最好。

随着温度的升高,平衡吸附量先增加后降低,在 25、35 ℃和45 ℃时理论最大吸附量(Q_m)分别为 11.72、12.31 mg·g⁻¹和9.55 mg·g⁻¹(表1)。Langmuir模 型中的 Q_m 和Freundlich模型中的 K_F 是反映吸附剂吸 附能力强弱的参数, Q_m 和 K_F 值越大,吸附能力越强^[1]。 25 ℃时, Q_m 和 K_F 均较大,表明室温下 SSD能作为吸附 剂有效去除 Cu²⁺,这与文献中的研究结果^[16]一致。用 Freundlich模型拟合得到的参数*n*在1~10区间,表明 SSD对 Cu²⁺的吸附由多种机制共同控制。钟金魁等^[11] 用两种玉米秸秆生物炭吸附 Cu²⁺时,Freundlich 方程 拟合得到的参数 1/*n*均小于1,表明吸附是多种机制 共同作用的结果,与本研究结果类似。表 2 比较了不 同生物吸附剂对 Cu²⁺的吸附性能,结果表明 SSD 对 Cu²⁺的吸附具有一定的优势,可作为吸附剂有效去除 废水中的 Cu²⁺。

2.4 吸附动力学

随着时间的延长,SSD对Cu²⁺的吸附分为两个过程(图4a)。在0~30 min阶段,吸附量快速增加(P<0.05),之后随着时间延长到480 min,吸附量增加缓慢并趋于稳定(P>0.05)。吸附量在0~30 min的快速增加可能是由于在反应初期,有足够多的吸附位点和较大的浓度梯度作为驱动力^[23],而随着游离的活性位点逐渐被占据,且固-液界面上的斥力增强,SSD对Cu²⁺的吸附越来越困难,吸附量变化不再显著。SSD对Cu²⁺的最大去除率为58.47%,在反应开始的10 min内,Cu²⁺的去除率达到54.45%,为最高去除率的93.12%,因此,综合考虑时间成本和吸附能力,SSD吸附Cu²⁺的最适吸附时间为10~30 min。

动力学参数(表3)和图4b、图4c进一步表明,

表1 不同温度下 SSD 对 Cu²⁺的等温吸附参数

Table 1 Isothermal adsorption parameters of Cu²⁺ onto SSD at different temperatures

模型 Model	参数 Parameter	25 °C	35 ℃	45 ℃
Langmuir: $Q_e = \frac{Q_m K_L C_e}{1 + K_L C_e}$	$K_{\rm L}/({\rm L}\cdot{\rm mg}^{-1})$	0.06	0.04	0.07
	$Q_{\mathrm{m}}/(\mathrm{mg} \cdot \mathrm{g}^{-1})$	11.72	12.31	9.55
	R^2	0.96	0.95	0.98
Freundlich: $Q_e = K_F C_e^{1/n}$	$K_{\rm F}/({\rm mg}^{1-1/n} \cdot {\rm L}^{1/n} \cdot {\rm g}^{-1})$	2.50	2.22	2.38
	n	4.00	3.64	4.45
	R^2	0.89	0.93	0.83
$\operatorname{Sips}: Q_e = \frac{K_{\mathrm{s}} C_e^{\beta_{\mathrm{s}}}}{1 + a_{\mathrm{s}} C_e^{\beta_{\mathrm{s}}}}$	$K_{\rm s}/({\rm L}\cdot{\rm g}^{-1})$	1.24	1.27	0.76
	$a_{\rm S}/({\rm L} \cdot {\rm mg}^{-1})$	0.10	0.09	0.08
	$eta_{ m s}/({ m L} \cdot { m g}^{-1})$	0.73	0.64	0.96
	R^2	0.97	0.97	0.98

表2 不同吸附剂对Cu²⁺吸附性能的比较

Table 2 Comparison of adsorption capacities of different adsorbents for Cu²⁺

吸附剂 Adsorbent	吸附量 Adsorption capacity/ (mg·g ⁻¹)	рН	参考文献 Reference
甘蔗渣	8.12	4.5~5.5	汪景等[19]
柑橘皮	25.65	5	ABDIĆ 等 ^[20]
大麦秸秆	4.64	7	PEHLIVAN 等 ^[21]
大麦秸秆(柠檬 酸改性)	31.71	7	PEHLIVAN 等 ^[21]
秸秆(发酵)	1.94(4.75)	自然值	WANG 等 ^[22]
SSD	12.31	5	本研究

http://www.aed.org.cn

— 801 —

图4 接触时间对 SSD 吸附 Cu²⁺的影响(a)以及 SSD 吸附 Cu²⁺的准一级动力学(b)、准二级动力学(c)和颗粒内扩散模型(d) Figure 4 Effects of contact time on Cu²⁺ adsorption by SSD(a), pseudo-first-order(b), pseudo-second-order(c) adsorption kinetics and intraparticle diffusion equation(d) of Cu²⁺ onto SSD

SSD对Cu²⁺的去除率随时间的变化更符合准二级动 力学方程(R^2 =0.87),且模型得到的理论吸附量($Q_{e,cal}$ = 11.49 mg·g⁻¹)与实际平衡吸附量(Q_{e,exp}=11.82 mg·g⁻¹) 更接近,表明吸附过程受化学吸附控制[24],在吸附过 程中Cu²⁺和SSD发生了化学变化。颗粒内扩散模型 拟合结果表明,SSD对Cu²⁺的吸附主要经历两个阶段 (图4d),在第一阶段,Cu²⁺很容易克服阻力,通过边界 层到达SSD的外表面,由于表面有大量的活性位点, 此阶段吸附速率较大;在第二阶段,Cu²⁺在外表面吸 附饱和后会扩散到吸附剂内部,该阶段扩散阻力明显 增大,速率减小,与内扩散速率常数结果(K1>K2)一致 (表3)。直线不过原点,表明颗粒内扩散不是反应的 唯一限速步骤^[25], CHENG 等^[26]用颗粒内扩散模型来 估计甲基橙吸附过程的实际控速步骤时也得到类似 的结果,线性直线不过原点,颗粒内扩散不是唯一的 速率控制步骤。这也表明 SSD 对 Cu²⁺的吸附过程是 多步骤过程,包括颗粒外传质和颗粒内扩散。

2.5 共存阳离子对吸附效果的影响

天然水体和工业废水中总有不同的离子共存,如 K⁺、Na⁺、Mg²⁺、Cl⁻、SO²⁺等。不同浓度的共存阳离子对 SSD吸附Cu²⁺均有一定程度的抑制作用,强弱表现为 Ca²⁺>Mg²⁺>Na⁺>K⁺,且抑制作用随着共存阳离子浓度

表3 SSD对Cu²⁺的吸附动力学参数 3 Advantion kinetics personneters for the advantion

Table 3 Adsorption kinetics parameters for the adsorption of Cu^{2*} onto SSD

模型 Model	参数 Parameter	数值 Value
准一级动力学方程	K_1/\min^{-1}	1.44
$Q_t = Q_{e, cal}(1 - e^{-K_1 t})$	$Q_{ m e, cal}/(m mg \cdot g^{-1})$	11.28
	R^2	0.56
准二级动力学方程 $\frac{t}{Q_t} = \frac{1}{K_2 Q_{e,cal}^2} + \frac{t}{Q_{e,cal}}$	$K_2 \times 10^3 / (g \cdot mg^{-1} \cdot min^{-1})$	0.27
	$Q_{ m e, cal}/(m mg \cdot g^{-1})$	11.49
	R^2	0.87
颗粒内扩散模型 Q _i =K _P t ¹² +C	$K_{\rm P}/(\mathrm{mg}\cdot\mathrm{g}^{-1}\cdot\mathrm{min}^{-1/2})$	0.50
	С	8.94
	R^2	0.90
	$K_{\mathrm{P}}/(\mathrm{mg}\cdot\mathrm{g}^{-1}\cdot\mathrm{min}^{-1/2})$	0.009
	С	11.51
	R^2	0.42

的增加而增强(图5)。当 Ca^{2+} 、 Mg^{2+} 、 Na^+ 和 K^+ 的浓度 由0mg·kg⁻¹增加到20mg·L⁻¹时,SSD对Cu²⁺的吸附量 分别下降了25.61%、23.35%、22.59%和18.62%。吸 附量降低可能与共存的阳离子会对Cu²⁺的吸附形成 竞争有关,而 Ca^{2+} 、 Mg^{2+} 离子的抑制作用大于 K^+ 、 Na^+ 离 子,这可能是因为 Ca^{2+} 、 Mg^{2+} 离子与 Cu^{2+} 具有相似的化 学性质。此外,由于 Ca^{2+} 、 Mg^{2+} 离子所带电荷比 K^+ 、 Na^+

多,所占据的吸附位点更多^[27],所以对SSD吸附Cu²⁺的 影响更大。因此,必要时可对共存阳离子进行预处 理,以使SSD对Cu²⁺有更好的吸附性能。

2.6 鸡血藤去除废水中Cu²⁺的潜在机制

2.6.1 SEM/EDS分析

对吸附 Cu²⁺前后的 SSD 进行了扫描电镜和能谱 分析,吸附前 SSD 表面比较光滑,吸附后的材料表面 粗糙不平,出现很多微小颗粒,推测 Cu 被吸附到 SSD 上(图 6a、图 6b),EDS 图上出现的 Cu 离子峰(图 6c、图 6d)也佐证了这一推测。吸附前后 SSD 的元素组成见 表 4,吸附前 SSD 主要由 C 和 O(质量分数分别为 63.55%、34.76%)组成,同时还存在少量 N、Mg、Si 和 Ca。吸附后 SSD 表面的 Ca 和 Mg 含量下降,表明在吸 附过程中可能发生了 Cu²⁺与 Ca²⁺、Mg²⁺间的离子交换。 2.6.2 FTIR 分析

在 500~4 000 cm⁻¹的波数范围内,对 SSD 吸附前 后 Cu²⁺的红外光谱进行了分析(图7)。吸附前,材料 峰出现在 3 401 cm⁻¹,属于 O—H 和 N—H 的伸缩振 动。2 917 cm⁻¹处的峰归属于—CH 和—CH₂中的 C—H 的伸缩振动^[28]。1 732 cm⁻¹处,SSD 出现了一个吸收 峰,这归因于羰基 C==O 的伸缩振动。1 620 cm⁻¹和 1 442 cm⁻¹分别对应羧基中的 C==O 和 C—O 吸收 带^[29]。1 034 cm⁻¹出现的峰对应于 C—O 键的拉伸振 动^[30]。代表羧基中 C—O键、氨基中 N—H键以及—OH 官能团的峰在吸附 Cu²⁺后发生了位移和强度的变化, 表明吸附 Cu²⁺的机制不只是 Cu²⁺与 Ca²⁺、Mg²⁺发生的 离子交换,还包括上述官能团的参与^[31],这与吸附 等温分析中吸附由多种机制共同控制的结果一致。 1732 cm⁻¹处的峰移至1738 cm⁻¹,表明该波数代表的 官能团(C==O)通过 SSD 与 Cu²⁺的共用或者交换电子 参与吸附过程。代表羧基的峰在吸附 Cu²⁺后向高频 移动,表明 Cu²⁺与该官能团的相互作用进一步增 强^[32]。由此可见,在 Cu²⁺的吸附过程中,多种官能团 均参与了吸附过程。

2.7 吸附机理

重金属离子从水体中去除是一个复杂的反应过 程,涉及络合、螯合、离子交换、表面吸附等多种机制。

图 6 SSD 吸附前(a,c)和吸附后(b,d)的SEM和EDS谱图 Figure 6 SEM-EDS images of SSD before(a,c) and after(b,d) adsorption

图7 SSD 吸附前后的 FTIR 谱图

Figure 7 FTIR spectra image of SSD before and after adsorption

Table 4 Chemical composition and content of SSD before and after adsorption(%)

项目Item	С	Ν	0	Si	S	Mg	Ca	Cu
吸附前	63.55	0.84	34.76	0.13	—	0.13	0.59	_
吸附后	77.64	3.24	17.92	_	0.08	—	0.13	0.99

http://www.aed.org.cn

— 803 —

LI等^[12]的研究表明鸡血藤中的原花青素含量占 3.99%~8.63%,原花青素又称为缩合单宁,结构式如 图 8a所示。缩合单宁会与金属离子通过邻苯二酚基 团中的邻二羟基发生离子交换作用或络合作用^[33],金 属阳离子会取代邻二羟基形成甲酸,同时邻苯二酚也 是形成稳定金属螯合物所必需的基团^[14]。本研究中, 带正电荷的Cu²⁺首先会与SSD表面的负电荷产生静 电吸引,吸附在材料表面的Cu²⁺会与SSD表面的Ca²⁺、 Mg²⁺发生离子交换作用(式3、式4),随着反应的进一 步进行,Cu²⁺会与邻二羟基发生离子交换作用或络合 作用(图 8b、图 8c),Cu²⁺也会与SSD上的C=O键通过 共用或者交换电子的方式参与吸附过程(式5)。

$$(SSD)\cdots Ca + Cu^{2+} \rightarrow (SSD)\cdots Cu + Ca^{2+} \qquad (3)$$

$$(SSD) \cdots Mg + Cu^{2+} \rightarrow (SSD) \cdots Cu + Mg^{2+}$$
 (4)

 $(SSD) \longrightarrow CH_2 \longrightarrow COO^- + Cu^{2+} \rightarrow$ $(SSD) \longrightarrow CH_2 \longrightarrow COO^- \cdots Cu^{2+}$

图 8 原花青素的结构(a)、Cu²⁺-邻苯二酚的离子交换反应(b) 和 Cu²⁺-邻苯二酚的络合反应(c)

Figure 8 The structure of procyanidins(a), Cu²⁺-catechol group ion exchange(b) and Cu²⁺-catechol group complexation(c)

3 结论

(1)SSD能够有效吸附Cu²⁺。吸附剂剂量、溶液 pH值、反应时间、反应温度及共存阳离子均是影响 Cu²⁺吸附效果的重要因素。Cu²⁺的去除率随着吸附剂 剂量的增加而上升;随pH值升高,Cu²⁺去除率呈先 升高后平稳的趋势;SSD对Cu²⁺的吸附速率较大,在 30 min时吸附达到平衡;共存阳离子会在一定程度 上抑制SSD对Cu²⁺的吸附,影响强弱表现为Ca²⁺> Mg²⁺>Na⁺>K⁺。 (2)SSD对Cu²⁺的吸附过程符合Sips等温吸附模型,吸附特征是Langmuir模型和Freundlich模型的结合,在低浓度下,SSD对Cu²⁺的吸附由扩散过程控制,而在高浓度下是具有饱和值的单分子层吸附,室温下SSD能作为吸附剂有效去除Cu²⁺。Cu²⁺在SSD上的吸附主要受化学吸附控制,吸附过程涉及两个阶段的扩散机制。

(3)SSD对Cu²⁺的去除机理包括离子交换作用、 与表面官能团的络合作用以及与材料所带负电荷之 间的静电吸引作用。

综上所述,SSD对废水中Cu²⁺有较好的吸附去除效果,且其来源广泛、价格低廉,可作为一种良好的生物吸附剂去除废水中的Cu²⁺,达到以废治废的效果。

参考文献:

- (1) 钟金魁, 丁莉, 李柳, 等. 玉米秸秆生物炭对铜的吸附及其影响因素
 [J]. 安全与环境学报, 2020, 20(5):1862-1870. ZHONG J K, DING
 L, LI L, et al. Adsorption of copper content rate on maize straw biochar and influential factors concerned[J]. Journal of Safety and Environment, 2020, 20(5):1862-1870.
- [2] WU L, WAN W, SHANG Z, et al. Surface modification of phosphoric acid activated carbon by using non-thermal plasma for enhancement of Cu(II) adsorption from aqueous solutions[J]. Separation and Purification Technology, 2018, 197:156-169.
- [3] 蒋珊, 周森, 邓稳, 等. 木质纤维纸基吸附材料及其重金属离子吸附 性能[J]. 林业工程学报, 2020, 5(3):101-107. JIANG S, ZHOU M, DENG W, et al. High-wet-strength paper-based lignocellulosic adsorbents and its heavy metal ion adsorption properties[J]. Journal of Forestry Engineering, 2020, 5(3):101-107.
- [4] ABDOLALI A, GUO W S, NGO H H, et al. Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: A critical review[J]. *Bioresource Technology*, 2014, 160: 57–66.
- [5] AWUAL M R, JYO A. Assessing of phosphorus removal by polymeric anion exchangers[J]. *Desalination*, 2011, 281:111–117.
- [6] 马春芳, 时洋, 刘建平, 等. 硫酸改性甘草废渣生物吸附剂对 Pb²⁺离 子的吸附[J]. 高校化学工程学报, 2015, 29(3):716-723. MA C F, SHI Y, LIU J P, et al. Adsorption of Pb²⁺ ion with sulfuric acid modified glycyrrhiza residue[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(3):716-723.
- [7] 杨冰, 丁斐, 李伟东, 等. 中药渣综合利用研究进展及生态化综合利用模式[J]. 中草药, 2017, 48(2):377-383. YANG B, DING F, LI W D, et al. Research progress on comprehensive utilization of Chinese medicine residue and ecological comprehensive utilization pattern[J]. Chinese Traditional and Herbal Drugs, 2017, 48(2):377-383.
- [8] DAI Y, SUN Q, WANG W, et al. Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review[J]. *Chemosphere*, 2018, 211:235-253.

— 804 —

http://www.aed.org.cn

- [9] 时洋, 马春芳, 冯宁川. 胺化麻黄废渣生物吸附剂对水中阳离子染料的吸附[J]. 环境工程学报, 2015, 9(11):5308-5314. SHI Y, MA C F, FENG N C. Adsorption of cationic dye from aqueous solution by aminated ephedra waste[J]. Chinese Journal of Environmental Engineering, 2015, 9(11):5308-5314.
- [10] 韦平英,魏东林,莫德清. 板蓝根药渣对低浓度含铅废水的吸附特性研究[J]. 离子交换与吸附, 2003, 19(4):351-356. WEI P Y, WEI D L, MO D Q. Biosorption of lead by *Isatis indigovica* Fort darff
 [J]. Ion Exchange and Adsorption, 2003, 19(4):351-356.
- [11] 马春芳, 时洋, 刘建平, 等. 硫酸改性甘草废渣对结晶紫和甲基橙 染料的吸附[J]. 工业水处理, 2015, 35(3):44-47. MA C F, SHI Y, LIU J P, et al. Adsorption for crystal violet and methyl orange dyes by sulfuric acid modified glycyrrhiza residue[J]. *Industrial Water Treatment*, 2015, 35(3):44-47.
- [12] LI W, LIU J, GUAN R, et al. Chemical characterization of procyanidins from *Spatholobus suberectus* and their antioxidative and anticancer activities[J]. *Journal of Functional Foods*, 2015, 12:468–477.
- [13] LEE M, LIN Y, HSU F, et al. Bioactive constituents of Spatholobus suberectus in regulating tyrosinase-related proteins and mRNA in HEMn cells[J]. Phytochemistry, 2006, 67(12):1262-1270.
- [14] OO C W, KASSIM M J, PIZZI A. Characterization and performance of *Rhizophora apiculata* mangrove polyflavonoid tannins in the adsorption of copper(II) and lead(II)[J]. *Industrial Crops and Products*, 2009, 30(1):152-161.
- [15] VILLANUEVA M E, SALINAS A, COPELLO G J, et al. Point of zero charge as a factor to control biofilm formation of *Pseudomonas aerugi*nosa in sol-gel derivatized aluminum alloy plates[J]. Surface and Coatings Technology, 2014, 254:145-150.
- [16] HU X, LONG L, GONG T, et al. Enhanced alginate-based microsphere with the pore-forming agent for efficient removal of Cu(II)[J]. *Chemosphere*, 2020, 240:124860.
- [17] 刘珊, 赵春朋, 李涛, 等. 改性壳聚糖凝胶球对 Cu(Ⅱ)的吸附[J]. 环境化学, 2020, 39(7):2013-2021. LIU S, ZHAO C P, LI T, et al. Adsorption of Cu(Ⅱ) by modified chitosan gel ball[J]. *Environmental Chemistry*, 2020, 39(7):2013-2021.
- [18] MOHAN D, RAJPUT S, SINGH V K, et al. Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent[J]. *Journal of Hazardous Materials*, 2011, 188(1/2/3):319– 333.
- [19] 汪景, 汪燚, 董双凤, 等. 4 种胺基改性甘蔗渣对 Cu²⁺的静态吸附 [J]. 武汉工程大学学报, 2020, 42(6):591-596. WANG J, WANG Y, DONG S F, et al. Static adsorption of Cu²⁺ using bagasse modified by four kinds of amine[J]. *Journal of Wuhan Institute of Technology*, 2020, 42(6):591-596.
- [20] ABDIĆ Š, MEMIĆ M, ŠABANOVIĆ E, et al. Adsorptive removal of eight heavy metals from aqueous solution by unmodified and modified agricultural waste: Tangerine peel[J]. International Journal of Environmental Science and Technology, 2018, 15(12):2511-2518.
- [21] PEHLIVAN E, ALTUN T, PARLAYICI Ş. Modified barley straw as a potential biosorbent for removal of copper ions from aqueous solution

[J]. Food Chemistry, 2012, 135(4):2229-2234.

- [22] WANG J, CUI H, CUI C, et al. Biosorption of copper(II) from aqueous solutions by Aspergillus niger-treated rice straw[J]. Ecological Engineering, 2016, 95:793-799.
- [23] 冯嘉颖,张军,宋卫锋,等. SA@L-Cys@Fe₃O₄磁性复合材料对含 Cu(Ⅱ)废水的处理效能及其机理[J]. 环境工程学报, 2020, 14 (12):3251-3261. FENG J Y, ZHANG J, SONG W F, et al. Performance and mechanism of Cu(Ⅱ)-containing wastewater treatment by magnetic composite of SA@L-Cys@Fe₃O₄[J]. *Chinese Journal of Environmental Engineering*, 2020, 14(12):3251-3261.
- [24] 邱钰茵, 王娜娜, 肖唐付. 茶叶残渣改性制备海绵状吸附材料及其 对Pb(Ⅱ)、Cu(Ⅱ)和Cd(Ⅱ)的吸附性能[J]. 环境化学, 2020, 39(11): 3180-3189. QIUYY, WANGNN, XIAOTF, et al. Preparation and performance of tea waste-modified spongy biosorbent for Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) adsorption[J]. *Environmental Chemistry*, 2020, 39(11):3180-3189.
- [25] 玛依拉·麦麦提热依木,迪丽努尔·塔力甫,阿布力克木·阿布力 孜.煤质炭制备条件的优化及对酚类吸附性能与吸附动力学[J]. 环境工程学报,2016,10(3):1281-1288. MAYILA M, DILINVER T, ABULIKEMU A. Optimization preparation conditions of coal activated carbon and adsorption capacity, kinetics for phenols[J]. Chinese Journal of Environmental Engineering, 2016, 10(3):1281-1288.
- [26] CHENG L, HOU C H, ZHANG B L, et al. Synthesis, characterization of nitrogen-doped mesoporous carbon spheres and adsorption performance[J]. RSC Advances, 2016, 6(115):114361-114373.
- [27] WANG L, ZHANG J, ZHAO R, et al. Adsorption of basic dyes on activated carbon prepared from *Polygonum orientale* Linn: Equilibrium, kinetic and thermodynamic studies[J]. *Desalination*, 2010, 254 (1/2/3):68–74.
- [28] HU Z, OMER A M, OUYANG X K, et al. Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(II) from aqueous solution[J]. *International Journal of Biological Macromolecules*, 2018, 108:149–157.
- [29] CHO D W, SONG H, KIM B. Reduction of nitrate in groundwater by Fe(0)/magnetite nanoparticles entrapped in Ca-alginate beads[J]. Water, Air, & Soil Pollution, 2015:206-226.
- [30] KWON O H, KIM J O, CHO D W, et al. Adsorption of As(III), As(V) and Cu(II) on zirconium oxide immobilized alginate beads in aqueous phase[J]. *Chemosphere*, 2016, 160:126–133.
- [31] ZHANG W, DENG Q, HE Q, et al. A facile synthesis of core-shell/ bead-like poly (vinyl alcohol)/alginate@PAM with good adsorption capacity, high adaptability and stability towards Cu (II) removal[J]. *Chemical Engineering Journal*, 2018, 351:462-472.
- [32] DAN K, ROY M, DATTA A. Non-equilibrium phase transitions in a liquid crystal[J]. *The Journal of Chemical Physics*, 2015, 143 (9): 94501.
- [33] ZENG X, DU Z, XU Y, et al. Characterization of the interactions between apple condensed tannins and biologically important metal ions [Fe²⁺(3d⁶), Cu²⁺(3d⁹) and Zn²⁺(3d¹⁰)][J]. LWT, 2019, 114:108384.