不同施氮量对设施番茄生长与产量的影响及最佳用量

沙海宁,孙 权*,李建设,郭鑫年,陈 茹 (宁夏大学农学院,银川 750021)

摘 要:通过田间试验研究了二代日光节能温室不同施氮量对番茄生长、产量及其经济效益等的影响。结果表明,供试土壤全盐随施氮量的增加而增加,pH则随氮肥施用量的增加而显著降低;番茄株高、茎粗、叶绿素含量随施氮量增加而显著增加,施氮量超过 600 kg \cdot hm⁻²时,冠幅显著增加,造成枝叶徒长。番茄产量与施氮量呈典型的抛物线关系,即施氮量低于 600 kg \cdot hm⁻²时,随施氮量的增加,番茄产量增加;但进一步增加的施氮量导致产量下降,产投比也显著降低。施氮使番茄果实中可溶性糖含量的增加,总酸度下降,糖酸比的增大,Vc 含量的增加,硝态氮的累积均达显著水平。设施番茄最高产量施氮量为 646 kg \cdot hm⁻²,最大经济效益施氮量为 604 kg \cdot hm⁻²。

关键词: 日光温室;产量;施氮量;番茄

中图分类号:S626

文献标识码: A

文章编号:1004-1389(2010)03-0104-05

Effect of N Fertilizer on Growth, Yield, Quality of Tomato and Optimum Application Rate of N in Greenhouse

SHA Haining, SUN Quan*, LI Jianshe, GUO Xinnian and CHEN Ru

(Agricultural College, Ningxia University, Yinchuan 750021, China)

Abstract: A field experiment was conducted to study the effect of different N fertilizer application rate on tomato growth, yield and economic benefit in second generation greenhouse. The results showed that the total salts content was increased with the N application, yet pH was decreased at the same time. The height, stem diameter and chlorophyll of tomato were increased along with increment of N application. When more than 600 kg • hm⁻² N was used in the field, the trunk breadth of tomato was significantly increased and led to overgrowth of leaves. The yield of tomato was increased along with enhanced N application rate, yet the yield of tomato was decreased if N applied more than 600 kg • hm⁻². N application promotes the increase of soluble sugar, Vc, and NO₃⁻-N content, but reduce the total acidity. Changed ratio of sugar/acidity improves the quality of tomato. The reasonable application rate of N is 646 kg • hm⁻². The optimum application rate of N is 604 kg • hm⁻².

Key words: Greenhouse; Yield; N application rate; Tomato

设施蔬菜是近年来宁夏重点发展的支柱产业之一,总栽培面积扩展迅速。番茄具有栽培简单、管理容易、销路广、经济效益高等优势,现已成为宁夏各类设施内栽培的主要蔬菜作物。番茄的生长特点是营养生长与生殖生长同时进行,对肥料

需求量大,养分含量高,生长期长,因而需肥绝对量比较大,为高需肥蔬菜作物[1-2]。朱亚萍等研究表明,氮、磷、钾肥配施能提高番茄产量和品质,增加糖酸比及 Vc 的含量,但番茄过量施用氮肥会降低糖酸比;番茄施磷、钾肥可提高糖含量;氮、

^{*} 收稿日期:2009-09-14 修回日期:2009-12-01

基金项目: 国家"十一五"科技支撑项目(2007BAD57B04)。

作者简介:沙海宁(1984-),女,宁夏银川人,硕士生,专业方向为植物营养与土壤质量。E-mail: shasha-003@ 163.com * 通讯作者: 孙 权(1965-),男,教授,从事干旱区土壤资源可持续利用教学与研究。E-mail: sun_q@nxu.edu.cn

磷、钾肥对番茄 Vc 影响的大小顺序为 K>P>N,氮、磷、钾配施用,比单独施用对提高 Vc 含量更有效^[3]。施肥是番茄增产的一项重要措施,但如果施肥不当,尤其是氮肥施用过量则不但不能增产,还会降低番茄的品质和污染环境。所以,探讨适宜的施肥量,特别是氮肥的适宜施用水平,成为目前宁夏二代日光温室番茄栽培中迫切需要研究的问题。

1 材料与方法

1.1 供试土壤

大田试验布置于永宁县杨和镇领鲜果业千亩 万间现代设施农业基地。该基地位于银川平原中部,土壤为典型的人为土壤一灌淤土。其0~20 cm 表层土壤基本理化性质见表 1。其中,pH 用 SH-3 精密酸度计测定,全盐用 DDS-11 电导率仪测定,有机质用重铬酸钾氧化-硫酸亚铁滴定法测定,碱解氮用扩散法测定,速效磷用硫酸钼锑抗法测定,速效钾用火焰光度计法测定,容重和田间持水量用环刀法测定[4]。

1.2 供试番茄

供试番茄为瑞克斯旺(446),为当地主栽品种。2008-08-13 育苗,2009-04-03 拉秧,9 月 13 日定植,全生育期 200 d。采用平垄双行栽培,垄宽1.4 m,株距 45 cm,行距 50 cm,每垄 2 行,1 垄为一个小区,小区面积 9.8 m²,每小区重复 2 次;番茄全生育期内共采果 9 次,首次采果为 2008-12-12,最后一次采果为 2009-04-02。

1.3 试验设计

采用单因素 5 水平随机区组设计; P2 O5 施用

量为 300 kg·hm⁻², K_2O 钾施用量为 450 kg·hm⁻², N 施用量分别为 0、300、600、900、1200 kg·hm⁻², 随机区组排列, 重复 2 次。有机肥为"科字"生物有机肥; 氮肥用尿素 [w(N) = 46%], 磷肥用重过磷酸钙 [$w(P_2O_5) = 46\%$], 钾肥为硫酸钾 [$w(K_2O) = 50\%$]。有机肥 15 t·hm⁻², 起垄前一次性基施, 磷肥全部基施, 氮、钾肥的 1/2 基施, 1/2 分 5 次分别在第 1 次、第 2 次、第 3 次、第 5 次、第 7 次采果后追施。

对设施番茄盛果期生长指标株高、茎粗、叶绿素含量进行测定。其中,株高为番茄顶端到根基部的垂直高度,茎粗用数显游标卡尺测定,叶绿素含量用 SPAD-502 叶绿素计测定。

1.4 统计分析

试验结果用 DPS 软件处理系统和 Excel 2003 进行统计分析和检验。

2 结果与分析

2.1 土壤供肥水平分析

土壤供肥水平是决定施肥量高低的主要参数之一。由表 1 可见,未施肥前,供试土壤有机质肥力为中等偏低的四级水平($10\sim20$ g·kg $^{-1}$)[$^{[5]}$;速效碱解氮为偏低的五级水平($25\sim50$ mg·kg $^{-1}$)[$^{[5]}$;速效磷为极缺乏的六级水平(<5 mg·kg $^{-1}$)[$^{[5]}$;速效钾则为较丰富的三级水平($100\sim150$ mg·kg $^{-1}$)[$^{[5]}$]。

施有机肥后,土壤全盐、有机质、碱解氮、速效磷和速效钾均有较多增加,但因田间人工起垄施肥的不一致,土壤养分变异大,都达不到显著差异水平。

表 1 供试土壤施肥前及施肥后基本理化性状

Table 1 Soil physical and chemical properties before and after fertilization

处理 Treatment	рН	全盐 /(g·kg ⁻¹) Total salt	有机质 /(g·kg ⁻¹) Organic matter	碱解氮 /(mg•kg ⁻¹) Available N	速效磷 /(mg•kg ⁻¹) Available P	速效钾 /(mg•kg ⁻¹) Available K
CK	8.91 ± 0.01 a	0.59 \pm 0.01 a	10.90 \pm 1.73 a	25.90±1.98 b	4.91±0.49 b	127.50 \pm 3.54 b
$MN_0P_0K_0$	8.92 ± 0.01 a	0.91±0.49 a	22.27 \pm 1.64 a	57.23±35.89 b	22.04 \pm 0.49 ab	333.75±213.90 ab
$MN_{300}P_{300}K_{450}$	8.71±0.02 c	1.00 ± 0.08 a	23.89 \pm 1.16 a	105.88 \pm 18.56 a	40.44 \pm 1.74 a	398.75 ± 83.09 a
$MN_{600}P_{300}K_{450}$	8.84±0.02 b	1.06 ± 0.59 a	21.50 ± 1.22 a	67.90±49.50 ab	27.4 \pm 18.88 ab	293.13±168.82 ab
$MN_{900}P_{300}K_{450}$	$8.62 \pm 0.01 d$	1.11 ± 0.28 a	21.46 \pm 1.94 a	52.68±24.50 b	35.77 \pm 23.52 a	352.50 ± 159.10 a
$MN_{1200}P_{300}K_{450}$	8.36±0.03 e	1.38±0.44 a	18.99 ± 3.32 a	54.43±8.66 b	34.81 ± 4.80 a	311.88 \pm 87.50 ab

注:N、P、K下标为N、P2O5、K2O的施用量。

Note: N,P,K base angle data in Table 1 indicated use amount of N,P2O5 and K2O, respectively.

在施有机肥和磷钾肥的基础上进一步增施不同数量的氮肥,全盐有进一步增加的趋势,有机质

变化不明显;碱解氮、有效磷、速效钾均有较大幅度增长,且差异显著;但标准差变异很大,进一步

说明人工施肥并起垄,造成单垄土壤肥力变异较 大。供试土壤施用尿素为氮源,由于其分解后以 铵离子形态存在,番茄吸氮后 H⁺残留于土壤,随 施氮量的增加,土壤 pH 显著下降。这对碱性土 壤改良有益。

不过,施氮量大于 900 kg· hm^{-2} ,土壤全盐 已达到轻度盐化水平,对番茄生长发育不利。

2.2 不同施氮量对设施番茄生长发育的影响

氮素是植物生长发育的重要因素之一,在一 定范围施氮素对蔬菜作物生长发育是有利的,缺 氮往往使植物生长缓慢,植株瘦弱,茎干细小,叶 片小且黄,脱落早,超出蔬菜正常生长所需氮素量 时,往往发育不良,甚至出现严重毒害现象。

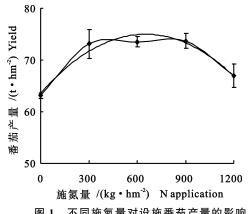
由表2可见,番茄株高在两个时期均随施氮 量增加而显著增加。不同施氮量对两个时期的茎 粗影响有差异,幼苗期差异不显著,而花期施氮量 增加促进了茎粗的增长,有利于植株健壮。冠幅 的大小在两个时期均明显受施氮量影响,施氮量 超过 600 kg·hm⁻²时,冠幅差异显著;进一步增 加施氮量,冠幅仍然显著增大,造成徒长而引起遮 阴,不利于光合产物向果实的转运。幼苗期施氮 量增加促进了叶绿素的增加,但花期这一差异不 显著。

表 2 不同施氮量对番茄生长指标的影响

Table 2 Effects of N application rate on growth index of tomato

编号 Code	处理 /(kg•hm ⁻²) Treatment	株高 /cm Height	茎粗 /mm Diameter of stem	冠幅 /cm Width of bough	叶绿素 Chlorophyll SPAD
		幼	苗期(移栽 13 d 苗龄)		
1	$MN_0P_0K_0$	21.70 \pm 1.82 c	4.74 ± 0.08 a	$22.83 \pm 3.33 \text{ d}$	$43.80 \pm 1.75 \text{ b}$
2	$MN_{300}P_{300}K_{450}$	24.67 \pm 1.53 b	4.37 ± 0.33 a	$27.00 \pm 1.00 \text{ cd}$	43.40±1.61 b
3	$MN_{600}P_{300}K_{450}$	20.93 \pm 1.50 c	4.51 ± 0.27 a	33.33 ± 7.02 bc	50.50 ± 4.90 a
4	$MN_{900}P_{300}K_{450}$	$24.33 \pm 1.53 \text{ b}$	4.66 ± 0.48 a	$35.33 \pm 1.15 \text{ ab}$	53.00 ± 2.36 a
5	$MN_{1200}P_{300}K_{450}$	27.83 ± 1.26 a	4.52 ± 0.16 a	41.00 ± 5.29 a	54.13 ± 4.22 a
		初	花期(移栽 25 d 苗龄)		
1	$MN_0P_0K_0$	48.67 \pm 5.13 d	$7.29\!\pm0.47$ b	51.33 ± 11.02 c	54.10 ± 2.45 a
2	$MN_{300}P_{300}K_{450}$	61.33 \pm 1.15 c	6.91±0.68 b	60.33±4.04 bc	53.87 \pm 5.52 a
3	$MN_{600}P_{300}K_{450}$	72.00 \pm 1.73 b	8.95 ± 0.55 a	$73.33 \pm 5.51 \text{ ab}$	56.03 ± 4.09 a
4	$MN_{900}P_{300}K_{450}$	70.33±5.51 b	9.10±0.91 a	71.33±5.86 ab	58.67±5.82 a
5	$MN_{1200}P_{300}K_{450}$	81.67±0.58 a	8.61 \pm 0.36 a	75.33 ± 10.69 a	55.10 \pm 2.30 a

2.3 不同施氮量对设施番茄产量的影响


氮素是蛋白质、核酸、叶绿体、酶和某些维生 素的重要组成成份。但是植物体内的氮素主要存 在于蛋白质和叶绿素中。其中,蛋白态氮通常可 占植株全氮的80%~85%,而蛋白质中平均含氮 也达到16%~18%,因此氮是番茄生长发育的关 键因子。施氮肥水平不同对番茄产量有较大影响 (图1)。

由于供试土壤速效氮碱解氮含量相对较低, 增施氮肥对番茄产量的增加有显著作用。图 1 显 示,施氮量与番茄产量表现为典型的抛物线关系, 即施氮量低于 600 kg·hm⁻² 时,随施氮量的增 加,番茄产量增加;但进一步增加的施氮量导致产 量下降。

2.4 不同施氮量对设施番茄品质的影响

由表 3 可见,施氮肥后单位质量番茄果实中 可溶性糖含量显著增加。高量施氮总酸度显著下

降,从而使糖酸比显著增大,改善番茄的风味。高 施氮可造成番茄减产,而产量的降低主要是果实 发育不良,单果质量小,因而单位质量的总酸下 降,且糖酸比增大。施氮肥也促使番茄 Vc 含量 显著增加,且硝态氮显著累积。不过,番茄硝态氮

不同施氮量对设施番茄产量的影响

Effect of N application rate on yield of tomato

含量远小于食品安全临界值指标。

2.5 不同施氮量设施番茄经济效益分析

施肥是促进作物增产的主要手段,而施肥成本占农业生产成本的50%左右,提高肥料的经济效益就能够提高种植业的经济效益。本试验中每 kg 肥料成本: N 3.9 元, P_2O_5 6.2 元, K_2O 8.4 元,番茄平均售价2.0 元·kg $^{-1}$ 。不同施氮量下设施番茄的经济效益见表4。

从表 4 中可以看出,由于供试土壤理化性质优良,单施有机肥及磷钾低肥时,设施番茄当季的产投比也较高,但总收益最低;由于氮素对番茄产量具有决定性影响,产投比大于对照的施氮量为300~600 kg·hm⁻²,总收益最高为施氮300 kg·hm⁻²;进一步增加施氮量,总收益持续降低,至1200 kg·hm⁻²高量施氮,由于番茄减产,经济效益和产投比都急剧下降。

表 3 不同施氮量对番茄品质的影响

Table 3 Effect of N application rate on quality index of tomato

编号 Code	处理 /(kg•hm ⁻²) Treatment	可溶性糖 /(g•kg ⁻¹) Soluble sugar	总酸 /(g•kg ⁻¹) Total acid	糖/酸 Sugar/acid	Vc /(mg • kg ⁻¹) Vitamin C	硝态氮 /(mg•kg ⁻¹) NO ₃ N
1	$MN_0P_0K_0$	15.92 ± 0.41 c	5.18 ± 0.11 a	$3.08\pm0.02~c$	16.84 \pm 1.25 c	$6.27\pm0.98~\mathrm{d}$
2	$MN_{300}P_{300}K_{450}$	22.12 \pm 0.78 a	5.10 ± 0.00 a	4.34±0.16 b	42.97 \pm 1.88 a	21.59 0.98 bc
3	$MN_{600}P_{300}K_{450}$	16.19±0.16 c	5.18±0.11 a	3.13±0.10 c	19.49±2.50 c	$25.77\pm2.96~\mathrm{ab}$
4	$MN_{900}P_{300}K_{450}$	17.15±0.33 b	3.89±0.02 b	4.42±0.11 b	45.19 ± 1.25 a	29.95 ± 0.98 a
5	$MN_{1200}P_{300}K_{450}$	21.72 ± 0.74 a	4.13±0.11 b	5.27 ± 0.04 a	25.25±1.88 b	19.50±3.94 c

表 4 不同施氮量对设施番茄经济效益的影响

Table 4 Effect of N application rate on economic benefit of tomato

施氮量 /(kg•hm ⁻²) Amount applied N	平均产量 /(t•hm ⁻²) Average yield	肥料成本 /(元・hm ⁻²) Fertilizer cost	产值 /(元・hm ⁻²) Output value	经济效益 /(元·hm ⁻²) Economic effect	产投比 Ratio of output and invest
0	63.135	14175	126270	112095	8.91
300	73.140	15345	146280	130935	9.53
600	73.560	16515	147120	130605	8.91
900	73.710	17685	147420	129735	8.34
1200	66.970	18855	133940	115085	7.10

2.6 设施番茄氮肥合理施用量

氮素被称为作物的生命元素,是作物需要的基本物质,增施氮肥常常能促进作物产量的提高。氮参与了植物体内许多重要化合物的组成,积极地参与了植物物质与能量的代谢。由于氮素在植物生命活动中占有重要地位,故氮素水平对植物的生长发育起着举足轻重的作用。产量的形成和提高是以植株生长和旺盛生理代谢为基础,增施氮肥,可提高根系脱氢酶活性,增强吸收能力。使叶片叶绿素含量增加,光合作用无机营养源,有机养分迅速输向果实,促进果实发育,调节植物生殖生长和营养生长,促进花器官形成,结果数增加,从而提高产量[6]。

然而,过量施氮肥常导致作物产量下降。国内外较多的氮肥试验结果表明氮肥用量(x)与产量(y)之间的关系可以用一元二次方程 $y=c+bx+ax^2$ (a > 0)表示。

对试验条件下施氮量与番茄产量之间的关系

进行了模拟,得到二者之间的相关关系为:

 $y = 63632 + 34.8990x - 0.02679x^{2} (R^{2} = 0.9530)$ (1)

由(1)式可见,氮肥的一次项系数为正,而二次项系数为负,二者呈典型的抛物线性关系,符合肥料效应的报酬递减规律;而决定系数则表明,番茄产量95%依存于施氮量。

表 5 不同施氮量下番茄产量变化方差分析
Table 5 Analysis of variance for tomato yield
under different N application rate

变异来源 Source	平方和 Sum of squares	自由度 DF	均方 Mean square	F 值 F- value	p值 p- value
回归 Regression	88.13	2.00	44.07	20.26	0.047
剩余 Error	4.35	2.00	2.17		
总变异 Total	92.48	4.00	23.12		

表 5 表明番茄产量的变化主要因施氮量不同 而引起,并可运用(1)式计算氮肥的合理施用量。

合理的养分管理是以作物的生长和氮素吸收

规律为中心,保证作物生长必要的耕层土壤氮素水平,实现土壤-作物体系氮素的输出输入过程的平衡,让农民在减少投入的情况下,保证作物的产量和品质不受到影响,而经济效益和环境效益增加。表3已经说明,施氮量最高时,经济效益和产投比均大幅度下降。从经济效益与成本投入角度来考虑,在单位面积上取得相同净产值的情况下(仅以肥料为唯一成本核算),低投入的肥料组合为较理想方案。根据边际分析原理[6], $\partial y/\partial x = 0$ 时,番茄产量最高,并可计算最高产量施氮量Nmax = 646. 22 kg · hm⁻²;而 $\partial y/\partial x = p_x/p_y$ 时,经济效益最大,并可以计算最大经济效益施氮量。当季氮素单价为 p_x =2.5元·kg⁻¹,而番茄单价仅 p_y =1.0元·kg⁻¹,从而得到最佳经济效益施氮量 Nopt=604.68 kg·hm⁻²。

3 讨论与结论

氮素也是构成生命的要素之一,是植物生长 必不可少的营养元素。在众多的矿质肥料种类 中,尤以氮肥对于促进各种作物生长发育、增产、 增收效果最为明显。缺氮往往使植物生长速度缓 慢,植株瘦弱,茎干细小,叶片小且黄,脱落早。在 一定范围内,随着施肥量的增加,蔬菜产量也会相 应提高。有研究认为在土壤肥力较高的条件下, 施氮对番茄产量几乎没有影响[8]。但大多数研究 结果都支持施用氮肥可显著提高蔬菜产量,而过 量施氮常造成植株徒长,导致坐果率降低、抗逆性 差,易于发生多种病害等。王翰林的研究表明,宁 夏日光温室番茄在 600 kg·hm⁻²的施氮水平下, 产量随施氮量的增加而增加,过量施用则导致减 产;番茄最佳施肥量在 $600 \sim 900 \text{ kg} \cdot \text{hm}^{-2}$ 的范 围内[9]。张艳玲发现 300 kg·hm⁻²的氮素供应 水平下,同时给予充足的磷钾供应,番茄植株的光 合性能等各项指标显著增加,可提高植株的光合 作用,增强植株对叶霉病的抗性,从而更好地促进 番茄的增产丰收[2]。

本研究显示,供试土壤全盐随施氮量的增加而增加,pH则随氮肥施用量的增加而显著降低,以尿素为主的氮肥施用对碱性土壤具有一定的改良作用。

氮对番茄的影响主要表现在生长发育及产量。由于供试土壤速效氮(碱解氮)含量相对较低,增施氮肥对促进番茄生长发育及产量的增加有显著作用。其中,番茄株高随施氮量增加而显著增加,花期施氮量增加显著促进了茎粗的增长;施氮量超过 600 kg·hm⁻²时,显著增加冠幅,造成枝叶徒长。幼苗期增施氮肥促进了番茄叶绿素的显著增加,有利于增加光合产物,从而促使番茄产量表现为典型的抛物线形,即,施氮量低于 600 kg·hm⁻²时,随施氮量的增加,番茄产量增加;但进一步增加的施氮量导致产量下降,产投比也显著降低。

相对于产量而言,番茄的果实品质主要是取决于品种和栽培等内外在因素,而不是由氮肥施用数量决定。不过,总体上,施氮肥后促长,番茄果实中可溶性糖显著增加,总酸度显著下降,糖酸比显著增大,Vc含量显著增加,且硝态氮显著累积。

施肥量的确定是植物营养的核心内容之一。 供试番茄对施氮量的反应符合典型抛物线形,从 而得到其最高产量施氮量为 646 kg·hm⁻²,最大 经济效益施氮量为 604 kg·hm⁻²。

参考文献:

- [1] 孙军利,赵宝龙.不同施肥对日光温室春茬黄瓜生长、产量和品质的影响[J].石河子大学学报:自然科学版,2006,24 (6):674-689.
- [2] 张艳玲,宋述尧. 氮素营养对番茄生长发育及产量的影响 [J]. 北方园艺,2008(2):25-26.
- [3] 朱亚萍,石孝军,赵治书.番茄配方施肥研究[J].西北农业大学学报,1999,21(2):167-169.
- [4] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2000.
- [5] 全国土壤普查办公室.中国土壤[M].北京:中国农业出版 社,1998.
- [6] 赵美令. 不同肥料配比对辣椒生长产量的影响[J]. 现代园 艺,2007,12:43-45.
- [7] 谭金芳. 作物施肥原理与技术[M]. 北京:中国农业大学出版社,2003.
- [8] 曹 兵,贺发云,徐秋明,等. 露地蔬菜的氮肥效应与氮素 去向[J]. 核农学报,2008,22(3):343-347.
- [9] 王翰霖,李建设. 不同氮肥水平对宁夏引黄灌区中部日光温室番茄产量和品质的影响[J]. 蔬菜,2009,2;27-31.