Acta Agriculturae Boreali-occidentalis Sinica

网络出版时间:2018-07-02

doi: 10.7606/j.issn.1004-1389.2018.07.011

网络出版地址:http://kns.cnki.net/kcms/detail/61.1220.S. 20180629.1716.024.html

羽衣甘蓝新品系自交不亲和性及主要园艺性状的评价

刘秀云1,杨红娟2,朱丽华2,顾卫红2

(1. 上海农林职业技术学院,上海 201600; 2. 上海市农业科学院,上海 201106)

摘要 在上海地区越冬露地栽培条件下,对6个观赏型羽衣甘蓝新品系的自交不亲和性及其主要园艺性状 进行观察评价。结果表明:6个羽衣甘蓝新品系间的自交不亲和性存在明显差异,OK-2、OK-5和 OK-6的自 交亲和性较高, 而 OK-1、OK-3 和 OK-4 的自交不亲和性较高。尤其 OK-4 的花期自交亲和指数仅为 1.87, 而 蕾期自交亲和指数高达 35.14,是羽衣甘蓝优良自交不亲和新品系;其次,OK-1 的花期自交亲和指数为2.82, 自交不亲和性也较突出。6个新品系的株型、叶型及叶色各具特色,且抗寒性和综合抗病性较强,均能在上海 地区安全越冬。其中,OK-1和OK-4的综合抗逆性最强,叶色也最为鲜艳独特,是综合农艺性状优良的羽衣 甘蓝新品系。

关键词 羽衣甘蓝;新品系;自交不亲和性;园艺性状

中图分类号 S681.9

文献标志码 A

文章编号 1004-1389(2018)07-1002-06

羽衣甘蓝(Brassica oleracea var. acephala f. tricolor Hort.)是十字花科甘蓝种的变种,属 2 a 生草本植物,观叶为主,亦可食用,主要观赏 期可达 4 个多月[1]。原产于地中海和小亚西亚一 带,在英、美、德等西方国家种植较多,中国引种栽 培已取得成功。因其叶片形态多变,心叶色彩绚 丽如花,整棵植株仿似盛开的牡丹,又被形象称为 "叶牡丹"[2]。又因其喜冷凉气候,极耐寒,可忍受 多次短暂霜冻,且栽培管理容易,观赏期长,近几 年已成为北京、上海、广州等大中城市秋冬季节优 良的花坛植物,并逐渐受到其他各大城市的青睐, 应用范围迅速扩大。但目前国内各地园林绿化生 产上所采用的观赏羽衣甘蓝品种多为引进品种, 不仅种子价格昂贵,且大部分品种的抗逆性差,易 提早抽臺,观赏性显著降低。

自交不亲和性是高等植物采取的一种促进异 交和避免自交的遗传系统[3],大部分羽衣甘蓝的 栽培品种都具有自交不亲和性。利用自交不亲和 性进行羽衣甘蓝杂种优势育种可以免去剥除雄蕊 的繁琐程序,提高育种效率,降低制种成本。由 此,本试验对上海市农业科学院育成的6个观赏 型羽衣甘蓝新品系的自交不亲和性及其主要园艺 性状进行了观察评价,旨在为选育适合上海及周边 地区秋冬季栽培的羽衣甘蓝新品种奠定种质基础。

1 材料与方法

1.1 试验材料

参试的 6 个观赏型羽衣甘蓝新品系 OK-1、 OK-2、OK-3、OK-4、OK-5 和 OK-6 等,均系上海 市农业科学院园艺研究所科技人员经连续8代定 向自交系统选育而成的纯合新品系,其株型、叶 型、花色及角果形状和抗病性等主要园艺学性状 已保持遗传上的稳定性和一致性。

1.2 试验方法

1.2.1 各新品系的自交不亲和性测定 试验于 2012-2013 年在上海市花卉良种试验场进行,新 品系于 2012-08-19 采用 50 孔穴盘育苗,9 月 20 日定植于大田,株行距为 30 cm×35 cm,每品系 定植50株,栽培管理同大田生产。从2013年4 月上旬开始(植株现蕾期),每品系挑选9株生长 健壮的植株,每株选2~3条健壮枝条,由下自上 选20~30个花蕾套袋用于蕾期人工授粉,并摘除 其他花蕾,每3株为一组,共3次重复。然后在植 株开花期每品系挑选9株生长健壮的植株,每株

收稿日期:2017-02-20 修回日期:2018-03-21

基金项目:上海市区域特色农业建设项目(沪农委(2012)第288号)。

第一作者:刘秀云,女,硕士,讲师,农艺师,主要从事植物栽培技术研究及教学工作。E-mail:liuxy@shafc.edu.cn

通信作者: 顾卫红, 女, 硕士, 研究员, 主要从事特色蔬菜花卉种质资源创新及新品种选育推广工作。E-mail; guwh518@163. com

选留3条健壮枝条,每株选留20~30个花蕾套袋,用于花期人工自交授粉,每3株为一组,重复3次。授粉结束后,分别统计蕾期和花期人工授粉的花数,授粉7d后,摘除所有的二级侧枝,以保证试验植株的营养供应。5月中旬调查各新品系的蕾期和花期自交的结实情况,在种子蜡熟期分别测量蕾期自交与花期自交的角果长度。6月上旬统计蕾期与花期的自交不亲和指数。亲和指数计算公式:亲和指数=结籽数/授粉花数。

1.2.2 各新品系的主要园艺学性状评价 试验于 2013-2014 年在上海市花卉良种试验场进行。新品系于 2013-08-15 用 50 孔穴盘播种育苗,9 月 15 日定植于大田,株行距为 30 cm×35 cm,采用随机区组设计,小区长 4 m、宽 1 m,每小区定植 40 株,重复 3 次。定植后 1 周内及时查漏补缺,试验田周围种植保护行,栽培管理同大田生产。

2013年10月下旬,各新品系的心叶开始转色,调查记载各品系的主要园艺性状、抗寒性及抗病性等。显色期是从播种到心叶颜色开始转变的时间(d)。最佳观赏期是从心叶显色到植株抽薹的时间(d)。抗寒性则根据在越冬栽培田间自然低温下的生长情况来调查鉴定:按植株冻害程度和恢复后冻害程度分为0~4级^[4]。整个栽培过程中不施用任何化学农药防治病虫害,在各新品系的苗期及观赏后期,根据各品系植株的霜霉病、黑腐病和软腐病在田间自然发病情况下进行抗病性调查,其中,霜霉病抗性鉴定参考蛋瑞峰等^[6]的方法,软腐病抗性鉴定参考张光明等^[7]的方法,以病情指数

作为抗病性评价标准:高抗(HR),0<病情指数 $\leq 10\%$;抗病(R),10%<病情指数 $\leq 30\%$;耐病(T),30%<病情指数 $\leq 50\%$;感病(S),病情指数 $\geq 50\%$ 。

1.3 数据分析

采用 Excel 2010 软件进行试验数据的计算与统计,采用 DPS 数据分析软件中的随机区组设计进行单因素试验,并用 Duncan's 新复极差法进行差异显著性分析。

2 结果与分析

2.1 各新品系的自交不亲和性表现

由表1可见,6个新品系都存在不同程度的 自交不亲和性,表现在花期自交结实率低,特别是 花期自交亲和指数和角果长度较小。其次,不同 品系间的自交亲和性存在明显差异,表现为亲和 指数和角果长度存在明显差异。OK-2、OK-5和 OK-6 的花期自交亲和性较强,亲和指数分别为 15.19、7.11 和 8.85, 角果也较长。OK-1、OK-3 和 OK-4 的花期自交不亲和性较强,尤其 OK-4 的花期亲和指数仅为1.87,而蕾期自交亲和指数 高达 35.14,是优良的羽衣甘蓝自交不亲和新品 系;其次,OK-1 在花期和蕾期的自交亲和指数分 别为 2.82 和 38.54,也可以作为羽衣甘蓝自交不 亲和新品系。由表1还可以看出,各新品系的蕾 期自交亲和指数和角果长度均大于花期自交值, 说明各新品系的蕾期自交结实率均较高,结实性 好,在种子生产上可以利用蕾期自交解决结实率 低的问题。

表 1 羽衣甘蓝新品系的亲和指数和角果长度

Table 1 Compatible indices and pod length of the new ornamental kale strains

		花期 Flow	wering phase		蕾期 Bud stage				
品系 Strain	种子数量 Seed number	授粉花数量 Number of pollinated flowers	花期亲和指数 Compatible indices at flowering phase	角果长度/cm Pod length	种子数量 Seed number	授粉花数量 Number of pollinated flowers	蕾期亲和指数 Compatible indices at bud stage	角果长度/cm Pod length	
OK-1	642.00±54.53	227.33±16.44	$2.82 \pm 0.04 d$	2.97±0.06 c	3 897.33±198.72	101.33±8.62	38.54±1.35 a	5.04±0.08 a	
OK-2	2 905.67±196.19	191.33±12.22	15.19 ± 0.32 a	4.37±0.05 a	$2\ 237.00\pm212.61$	103.00±5.00	21.73±1.91 d	4.54±0.02 c	
OK-3	649.67 ± 32.52	207.00±19.31	$3.15\pm0.17~\mathrm{d}$	3.93±0.08 b	1619.33 ± 66.73	108.33 \pm 6.11	14.96±0.61 e	4.15±0.08 d	
OK-4	381.33 ± 11.37	204.00±20.52	1.87 ± 0.16 e	2.60±0.06 d	3 640.33±125.9	103.67±4.93	35.14±0.90 b	4.73±0.05 b	
OK-5	1 667.00±51.68	234.67 ± 9.29	$7.11\!\pm\!0.29~c$	3.03±0.04 c	$3\ 177.00 \pm 214.25$	105.33 ± 7.77	30.17±0.19 c	4.69±0.03 b	
OK-6	1 778.33±117.36	201.00±12.12	8.85±0.12 b	3.03±0.05 c	3 420.33±187.92	104.67 \pm 7.77	32.76 ± 2.32 bc	4.01±0.06 e	

注:数据为"平均数±标准差"。不同小写字母表示统计分析的差异水平(P<0.05)。

Note; Data are "mean \pm SD". Different lowercase letters indicate significantly statistical levels (P<0.05).

2.2 各新品系的主要园艺性状表现

由表 2 可知,6 个观赏羽衣甘蓝新品系的株型、叶型和叶色各具特色。从株型上可以分为直立式、抱卧式和半抱卧式,OK-1 为直立式,OK-2和 OK-3 为抱卧式,OK-4、OK-5和 OK-6 为半抱卧式。根据叶型又可以分为裂叶、皱叶和圆叶 3种,其中 OK-1 为裂叶,OK-2和 OK-3 为皱叶,余者均为圆叶。结合叶型和株型来看,裂叶多为直立式,皱叶多为抱卧式,圆叶则多为半抱卧式。各新品系叶色绚丽多变,其外叶颜色可以分为绿、深绿和暗紫 3 种,心叶颜色则包含了白、粉红和紫红 3 种。羽衣甘蓝的内叶数/外叶数的值越大,观赏性越好,其中 OK-1 的内叶数/外叶数为 3.4,观赏

性最佳。OK-2 的株高最高,为 17.3 cm,OK-1 最矮,为 10.4 cm。此外,这 6 个新品系的开展度均超过 35 cm,株幅较大,远观和近观效果较好。

羽衣甘蓝的显色期越早,越能提前欣赏其心叶的色彩,羽衣甘蓝的观赏期长短则与显色早晚和抽薹时间有关。由表1可见,这6个新品系都在10月下旬开始显色,其显色期均在65 d左右,但品系间的观赏期存在较大差异。其中,OK-4抽薹最晚,观赏期最长,长达156 d,其次是OK-5和OK-6,观赏期分别为148 d和150 d,而OK-1、OK-2和OK-3抽薹较早,观赏期较短,大约在140 d。

表 2 羽衣甘蓝新品系的主要园艺学性状

Table 2 The main horticulture characteristics of new ornamental kale strains

品系 Strain	株型 Plant type	叶型 Leaf type	外叶色 Outer leaf color	心叶色 Inner leaf color	外叶数 Number of outer leaves	内叶数 Number of inner leaves	内叶数/ 外叶数 Number of inner leaves/ outer leave	Plant height	开展度/cm Corolla size		l 观赏期/d Ornamental period
	立式 rtical	裂叶 Lobed leaf	暗紫 Dull purple	粉红 Pink	15	51	3.4	10.4	35.3	65	141
OK-2 抱持 Em	卧式 ıbraced-horizontal	皱叶 Crinkle leaf	绿 Green	白 White	18	41	2.3	17.3	36.7	67	137
OK-3 抱脸 Em	卧式 ibraced-horizontal	皱叶 Crinkle leaf	绿 Green	紫红 Purplish red	20	57	2.9	12.5	40.5	69	141
	包卧 lf embraced-horizontal	圆叶 Round leaf	暗紫 Dull purple	紫红 Purplish red	21	53	2.5	14.1	37.9	64	156
	包卧 lf embraced-horizontal	圆叶 Round leaf	绿 Green	台 White	18	52	2.9	13.3	41.3	67	148
OK-6 半扫	包卧 lf embraced-horizontal	圆叶 Round leaf	深绿 Dark green	紫红 Purplish red	19	45	2.4	13.4	36.8	66	150

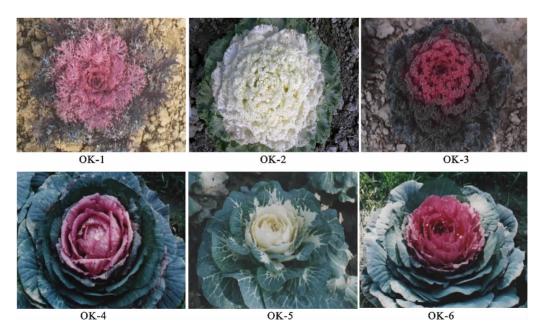


图 1 6 个观赏型羽衣甘蓝新品系

Fig. 1 The 6 new ornamental kale strains

2.3 各新品系的抗寒性表现

为了鉴定这 6 个羽衣甘蓝新品系的耐寒性,本试验对越冬栽培的大田生长情况进行了调查,结果见表 3。在 2013 年 11 月下旬至 12 月上旬,试验大田夜间和清晨出现了持续 3~4 d 的 0~一3 ℃的低温 3 次,各品系在经受低温后均能正常生长,无任何冻伤迹象,且经过霜冻锻炼后,心叶色彩更加鲜艳。在 2013 年 12 月中下旬,试验大田的最低气温达一5 $\mathbb C$,约持续 1 周,以 OK-2和 OK-3 这 2 个皱叶型品系的耐寒性最差,受冻后叶缘出现枯黄症状(冻害程度为 2 级),其余各

品系外叶边缘出现轻微冻伤(冻害程度为1级),但生长3~4 d 后又能恢复正常。其中,在2014年1月上中旬,试验大田遭遇了一8℃的低温,以OK-1和OK-4的耐寒性最强,外包叶叶缘出现轻微冻伤症状(冻害程度为1级),生长4~5 d 后又逐渐恢复正常;OK-5和OK-6受到了中度冻伤,其外包叶叶缘逐渐出现枯黄症状(冻害程度为2级),不能恢复正常;而OK-2和OK-3的耐寒性最差,不能忍受一8℃的低温,外包叶逐渐枯黄(冻害程度3级),观赏性明显降低,观赏期显著缩短。

表 3 观赏羽衣甘蓝新品系的抗寒性

Table 3 The cold tolerance of new ornamental kale strains

	-3 °C ~0 °C			−5 °C						
品系 Strain		恢复后 冻害程度 Degree of freezing injur after recover			恢复后 冻害程度 Degree of reezing injury after recovery		冻害程度 Degree of freezing injury	恢复后 冻害程度 Degree of freezing injury after recovery		综合观赏性 Comprehensive ornamental value
OK-1	0	0	无冻伤 Not frostbitten	1	0	轻微冻伤 Slightly frostbitten	1	0	轻微冻伤 Slightly frostbitten	优 Excellent
OK-2	0	0	无冻伤 Not frostbitten	2	1	中度冻伤(叶缘枯 黄) Moderate frostbit- ten (Leaf margin turned withered and yellow)	3	2	中度冻伤(外包叶逐 新枯黄) Moderate frostbit- ten (Outer leave turned withered and yellow gradually)	- 一般 e Ordinary
OK-3	0	0	无冻伤 Not frostbitten	2	1	中度冻伤(叶缘枯 黄) Moderate frostbit- ten (Leaf margin turned withered and yellow)	3	2	中度冻伤(外包叶逐 新枯黄) Moderate frostbit- ten (Outer leave turned withered and yellow gradually)	- 一般 e Ordinary
OK-4	0	0	无冻伤 Not frostbitten	1	0	轻微冻伤 Slightly frostbitten	1	0	轻微冻伤 Slightly frostbitten	优 Excellent
OK-5	0	0	无冻伤 Not frostbitten	1	0	轻微冻伤 Slightly frostbitten	2	1	中度冻伤(叶缘枯黄) Moderate frostbit- ten (Leaf margir turned withered and yellow)	- 良 n Good
OK-6	0	0	无冻伤 Not frostbitten	1	0	轻微冻伤 Slightly frostbitten	2	1	中度冻伤(叶缘枯黄) Moderate frostbit- ten (Leaf margir turned withered and yellow)	- 良 n Good

2.4 各新品系的抗病性表现

羽衣甘蓝同大部分十字花科作物一样,其病害主要为霜霉病、黑腐病和软腐病等,本试验通过在整个生长周期内不施用任何农药防治病虫害,调查了这6个新品系的大田霜霉病、黑腐病和软腐病的自然抗病性,鉴定结果见表4。在霜霉病抗性方面,以OK-4最强,表现为高抗,而OK-6的抗性最弱,表现为耐病,其他品系表现为抗病。OK-1和OK-4对黑腐病的自然抗病性最强,OK-2、OK-3和OK-5表现为抗病,而OK-6的抗性最差。OK-1和OK-3对软腐病表现高抗,其他品系则表现为抗病。以田间综合抗病性来看,OK-1

和 OK-4 的抗病性最强,其次为 OK-3,而 OK-6 的抗病性最差。

3 结论与讨论

十字花科作物都具有自交不亲和的特性,且自交不亲和性是可以遗传的^[8-10],利用遗传性状稳定的自交不亲和系作为亲本配制一代杂种,可省去人工去雄的繁琐,显著降低制种成本。本研究表明,6个育成观赏型羽衣甘蓝新品系的自交不亲和性存在较大差异,其中OK-1和OK-4的自交不亲和性较强,且综合园艺性状优良,可作为观赏型羽衣甘蓝杂交新品种选育的优良亲本材料。

品系 Strain	霜霉病 Down	ny mildew	黑腐病 Bl	ack rot	软腐病 Soft rot		
	病情指数/% Disease index	抗性 Resistance	病情指数/% Disease index	抗性 Resistance	病情指数/% Disease index	抗性 Resistance	
OK-1	15.5	R	6.7	HR	8. 1	HR	
OK-2	17.9	R	16.4	R	15.7	R	
OK-3	21.3	R	19.8	R	8.6	HR	
OK-4	7.6	HR	8.3	HR	16.5	R	
OK-5	14.2	R	20.5	R	18.4	R	
OK-6	33.6	Т	37.6	Т	22.7	R	

表 4 羽衣甘蓝新品系的抗病性
Table 4 The disease resistance of each new ornamental kale strains

观赏型羽衣甘蓝作为冬季花坛植物,首要的 经济性状是具有较强的耐寒性,其次是转色早,耐 抽臺,观赏期长。本研究结果表明,6个观赏羽衣 甘蓝新品系的株型、叶型和叶色各具特色,综合观 赏价值高,且抗寒性强,对霜霉病、黑腐病和软腐 病的综合抗病性也较强,尤以 OK-1 和 OK-4 的 抗寒性和综合抗病性最强。OK-4 属于半抱卧株 型,开展度中,叶型圆滑,显色早,心叶紫红色,鲜 艳夺目,观赏期长达156d,可短暂忍受多次-5~ -8℃的低温霜冻,高抗霜霉病和黑腐病,且花期 自交不亲和指数低,属于观赏性状优异兼具高自 交不亲和性的优异羽衣甘蓝新品系。OK-1 属于 直立株型,裂叶型,显色早,心叶粉红,清新淡雅, 可短暂忍受多次-5~-8℃的低温霜冻,高抗黑 腐病和软腐病,且花期自交不亲和性较强,可作为 抗病抗逆观赏型羽衣甘蓝新品种选育的亲本 种质。

参考文献 Reference:

- [1] 饶璐璐. 羽衣甘蓝(Kale)[J]. 蔬菜,1997(1):10-11.

 RAO L L. Ornamental kale [J]. Vegetable,1997(1):10-11.
- [2] 何小玲,王金发. 观赏花卉的品质基因及其基因工程问题 [J]. 植物生理学通讯,1998,34(6):462-466. HE X L,WANG J F. Quality genes and genetic engineering problems of ornamental flowers [J]. *Plant Physiology Communications*,1998,34(6):462-466.
- [3] MCCUBBIN A G, KAO T. Molecular recognition and response in pollen and pistil interactions [J]. *Annual Review of Cell & Developmental Biology*, 2000(16):333-364.
- [4] 李惠芬,钱芝龙. 羽衣甘蓝创新种质耐冻性及在杂种一代中的遗传表现[J]. 中国园艺文摘,2006(2):14-16.
 LI H F,QIAN ZH L. Cold resistance and genetic performance in F₁ hybrids of ornamental kale new germplasms [J].

Chinese Horticultural Abstracts, 2006(2):14-16.

- [5] 于 利,黄建新,王 红,等. 结球甘蓝霜霉病抗性鉴定与遗传分析[J]. 华北农学报,2013,288(3):193-198.

 YU L,HUANG J X,WANG H,et al. Identification and genetic analysis of downy mildew resistance in Brassica oleracea var. capitata L [J]. Acta Agriculturae Boreali-Sinica, 2013,288(3):193-198.
- [6] 崔瑞峰,孙九光,张光星. 甘蓝黑腐病苗期抗病性鉴定[J]. 北方园艺,2008(6);201-203.

 CUI R F,SUN J G,ZHANG G X. Studies on identifying resistance to black rot of cabbage in seedling stage [J].

 Northern Horticulture,2008(6);201-203.
- [7] 张光明,王翠花. 大白菜抗软腐病接种鉴定方法的初步研究 [J]. 山东农业科学,1995(5);39-40.
 ZHANG G M, WANG C H. Preliminary study on the method of inoculation and identification of soft rot in Chinese cabbage[J]. Shandong Agricultural Science, 1995(5);39-40.
- [8] 雷建军,李成琼,宋 明. 结球甘蓝主要经济性状遗传研究 [J]. 西南农业大学学报,1994,16(3):243-246.
 LEI J J,LI CH Q, SONG M. Inheritance of main economic characters in cabbage (*Brassica oleracea* var. *capitata*) [J]. *Journal of Southwest Agricultural University*,1994, 16(3):243-246.
- [9] 吴淑芸,曹辰兴. 蔬菜育种繁育原理和技术[M]. 北京:中国农业出版社,1995:55-58.
 WU SH Y,CAO CH X. Principles and Techniques of Vegetable Breeding [M]. Beijing: China Agricultural Press, 1995:55-58.
- [10] 蓝兴国,解莉楠,于晓敏,等. 羽衣甘蓝自交不亲和系的选育及 S13b 单倍型的鉴定[J]. 北京林业大学学报,2006,28(12);32-39.

 LAN X G, XIE L N, YU X M, et al. Selection of self-incompatible line and identification of the S13b haplotype

jing Forestry University, 2006, 28(12): 32-39.

from Brassica oleracea var. acephala [J]. Journal of Bei-

Evaluation of Self-incompatibility and Main Horticultural Traits of New Strains of Ornamental Kale

LIU Xiuyun¹, YANG Hongjuan², ZHU Lihua² and GU Weihong²

Shanghai Vocational College of Agriculture and Forestry, Shanghai 201600, China;
 Shanghai Academy of Agricultural Sciences, Shanghai 201106, China)

Abstract Self-incompatibility and main horticultural traits of 6 new strains of ornamental kale (Brassica oleracea var. acephala f. tricolor Hort.) were evaluated, which were cultivated in open field through winter in Shanghai. The 6 new strains showed different self-incompatibility. The new strains OK-2,OK-5 and OK-6 had higher self-compatibility, while strains OK-1,OK-3 and OK-4 had higher self-incompatibility. In particular, the self-incompatibility of OK-4 was only 1.87 at flowering phase while higher self-compatibility of 35.14 at bud stage. The results meant OK-4 is a good new strain with high self-incompatibility. Secondly, the self-compatibility of OK-1 at flowering phase was 2.82. The 6 new strains showed different plant types, leaf types and flower colors. The 6 strains also showed strong cold tolerance and disease resistance, and they could be cultivated in open field through winter in Shanghai area. Compared with other strains, OK-1 and OK-4 are new ornamental kale strains with strongest comprehensive resistance, most unique leaf colors, and good comprehensive agronomic traits.

Key words Ornamental kale; New strain; Self-incompatibility; Horticultural traits

Received 2017-02-20 **Returned** 2018-03-21

Foundation item Shanghai Regional Characteristic Agricultural Construction Project[Shanghai Agricultural Commission(2012) No. 288th].

First author LIU Xiuyun, female, master, lecturer, agronomist. Research area: researching and teaching of plant cultivation technology. E-mail: liuxy@shafc. edu. cn

Corresponding author GU Weihong, master, researcher. Research area; innovation of germplasms of special vegetables and flowers and breeding of new varieties. E-mail; guwh518@163.com

(责任编辑:潘学燕 Responsible editor: PAN Xueyan)