鄂北岗地冷白土特性和利用改良*

丘平 易仁炎 蔡庆祥 陈防 巴瑞先

(湖北省农科院土肥所)

鄂北岗地约有28万亩冷白土,因受到严重的侵蚀作用和缺乏有机质而低产。本文根据调查和试验资料拟就冷白土的分布、特性及利用改良等问题作一叙述。

一、岗地冷白土形成的自然条件和分布规律

鄂北岗地地处南襄隘道,属北亚热带季风气候,具南北过渡型特征,四季分明,冬夏季长。据当地气象资料,年平均日照1900—2100小时,气温15—16℃,≥10°积温4700—4800℃,年平均降水量750—950毫米,主要集中4—10月,常有旱涝灾害发生。年平均相对湿度72—76%,蒸发量1318—1751毫米。地质构造属秦岭褶皱带和淮阳地盾之间的凹陷地区,为汉水中游和唐、白河下游第四纪堆积平原的一部分。主要由新构造运动抬升 受切割 而成岗 地地貌[1]。其中切割程度较轻的平岗,面积较大,相对高度在20米以下,坡度在10°以下。长条形岗坡与浅槽状的垅谷平行排列,似波状平原。东西两侧与丘陵相连的过渡地带,切割较细碎,面积较小。

根据土壤普查资料结合调查推算,从老河口一盂楼的公路以东,经襄阳县境至枣阳环城的东西120公里,南北45公里的平岗区内,凡坡降小于0.7%之处,无论岗腰岗顶或海拔高低,都有冷白土零散分布。冷白土常与白土相连,二者坡位互有上下,而白土坡度稍大。坡度更大而又起伏频繁者为黄土。低洼处为黑土。显然,坡度是决定岗地土壤的主 要成 土 条件 之一。

二、冷白土的主要性状

冷白土剖面分表土层、心土层和底土层,各层的主要形态特征如下:

裹土层 厚11—35厘米,一般比白土薄10厘米左右。质地以轻壤或中壤居多。湿润时灰黄一灰棕色,疏松易散,呈粉砂状单粒,培肥好者有部分团粒,干时灰白色(5^Y7/1),呈团块状。雨后不易干,干后地表有大量铁锰结核裸露,约为干土重的3—4%。

心土层 厚8—50厘米, 质地为重壤—轻粘, 甚紧实。湿时呈灰或棕灰色, 干后棕灰(10 YR 5/1)—灰黄(2.5 Y 6/3)。干湿度或小于底土。呈棱块状结构, 结构面有铁锰胶膜, 浓淡不一。黄色锈斑或有或无, 通透性极差。

底土层 较深厚,为黄土层(色棕黄,2.5Y4/4),或黑土层(色暗灰,5Y4/1)。在剖面 100厘米内,也有黄一黑,或黑一黄两层重叠的。呈棱块状结构,具胶膜,多锈斑和铁锰结核,

^{*} 瘦樊市农科所朱孔祥、郝富新,襄阳县农业局张凤扬、刘尚辅、张士骆、杨子荣、刘从良、刘彦斌, 枣阳 县 农业局柏世凯、陈新义、胡元章、李志坚、柯玉成,老河口市农业局贾绍灿、燕家英等问志参加工作。本所化验室承 担主 要的化学分析。

部分有石灰结核。较湿润,有的在1米处可见地下水。

上述剖面特征表明,冷白土的成土过程主要是:

1. 淋溶和源洗过程 冷白土在雨季因径流缓慢,土壤常出现滞水、缺氧和铁锰还原现象, 土壤受到淋溶和源洗作用,使土层中粘粒、铁锰还原物质移动和粉砂的残积,导致土色变浅, 质地变轻,形成了耕性好而缺乏养分的土壤。

从冷白土的土壤全量分析结果(衰1)中也可看出,其表层硅含量高于心、底土层,而铁铝含量低于心、底土层。这是土壤进行淋溶和漂洗过程的有力佐证。

2.粘化过程 冷白土A层>0.01毫米的粗粉粒和砂粒占60%以上,而B层<0.001毫米的粘粒占36.5%(表2)。表明粉砂和粘粒在A、B层间的分异现象非常明显。

土圾	深 度 (厘米)	烷失量	SiO ₂	$F_{\epsilon_2}O_3$	Al ₂ O ₃	CaO	MgO	K ₂ O	MnO	Na ₂ O	Ti O ₂	P ₂ O ₅
冷白土	0-20	4.17	74.50	4.76	11.39	1.08	0.73	1.54	0.07	1.16	0.58	0.04
(郑庄)	20-28	5.44	67.28	6.39	15,27	1.18	1.06	1.76	0.10	0.99	0.54	0.02
	2851	6.73	61.77	7.07	17.25	1.22	1.22	2,21	0.07	0.88	0.55	0.02
冷自土田	0-20	5.00	69,40	5.40	13,94	1.20	1.13	1.88	0.10	1.03	0.61	0.07
(安庄)	20-40	6.66	61,06	6,89	18,60	1.28	1.58	2,26	0,08	0.79	0.61	0.04
	40-100	5.48	64.34	6.53	16,68	1.37	1.81	2.33	0.09	1.10	0,60	0.04
白土	0-30	4.25	71.80	6.20	12.49	1.15	0.64	1.88	0.08	1.12	0.56	0.04
(蛤堰)	30-37	3,87	74.74	4.86	11.21	1.13	0.72	1.97	0.10	1,27	0.60	0.06

表 1 鄂北岗地三种土壤的全量分析(%)

^{*} 分析方法为常规系统分析,中国科学院南京土壤研究所编,《土壤理化分析》第237—287页。

	AL 10-L3 C. J. Harm (A. Land M. A. Land M. Land M. A. Land M. Land M							
土 层 (厘 米)	>0.05砂粒	0.05-0.01組紛粒	0.01-0.005 中粉粒	0.005-0.001 细胞粒	<0.001 粘粒			
A 2—13	6,8	56.3	8.2	8.2	20.5			
13-16	7.8	54.3	8,2	9,2	20.5			
AB 17-20	0	53.7	9.2	10.3	26.8			
B 20-23	5.1	36.5	8.3	13.6	36.5			
C 28-31	13.6	27.4	8.4	10.6	40.0			

表 2 鄂北岗地冷白土(郑庄)颗粒组成%*(粒径: 毫米)

根据8个试样测定的平均值计算,冷白土的A/B层的粉/粘比为2.0,B/A层的粘粒比为1.5(表3)。由此可以判定,由于冷白土表层的粘粒下移,B层发育为淀积粘化层^[2,3]。这又证明粘化过程也是冷白土的主要成土过程。

就性质而言,冷白土耕层 pH6.5—7.5,无石灰反应。阳离子交换量 13—24 毫克当 量/100克土,9个土样的平均值为18.4毫克当量/100克土。盐基饱和度90%左右。养分含量普遍低于白土和黄土。例如有机质含量仅0.96%,比白土和黄土低0.3%和0.2%,全磷0.055%,速效磷一般小于5ppm,速效钾105ppm,缓效钾60毫克/100克土。

冷白土表层粉砂含量较高,易纳墒保墒,故水分含量少丰高于黄土。温度通常比黄土低0.5°以上。在春季冷暖多变时期,冷白土低0.7°; 在歷夏,即使裸露地也要较黄土低0.5一1.5°; 在棉田行间则要低1.5一3.0°。冷白土湿度大,是引起土温低的主要原因。

^{*} 爽獎市土肥站吴明甫同志分析

土壤及层次		>0.05	0.05-0.00		<0.05		粉/粘比	A/B足	B/A 尺
1.74.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	砂粒	幅度	平 均	幅 度	平均		粉粘比	粘粒比
冷	A 层	7.2	47.9-65.1	58.9	27.1-44.8	33.9	1.73	2.01	1.50
白	B层	5.0	34,4-52,1	44.0	36.3-62.1	50.9	0.86	•	
土	C层	8.8	35.8-46.2	40.5	49.1-52.4	50.7	0.80	1	_
É	A层	7.0	54.7-64.8	58.1	30.8-40.4	34.9	1.66	0.61	0.72
	B层	6.1	60.9-76.4	68.7	19.4-31.0	25.2	2.73		
土	C层	7.5	41.0	41.0	51.5	51.5	0.80		,
黄	A层	7.9	49.9-52.5	51.0	38.5-43.6	41.1	1 24	1.38	1.16
<u>+</u>	B层	9.5	41.9-43.8	42.9	46.0-49.2	47.5	0,90	degra en vetambere	* ************************************

以环刀土样进行的土壤水分蒸发模拟试验(表4)表明,土壤经42℃烘4小时和12小时后,黄土A层失去的水分较冷白土A层高,说明后者毛管孔隙率较低,因而保墒能力较强。

由于冷白土湿度大、土温低又缺乏养分,种植作物常有迟发早衰现象。改水田,一般亩产稻谷仅150公斤左右。

烘前 200cm3 土体 烘4小时后 烘12小时后 土 坡 及 层 次 干重(克) 含水(克) 失水(克) 占含水% 失水(克) 占含水% 冷白土 A 层 240.2 81.2 9:1 11.2 25,9 31,9 B 层 307.7 10.1 27.2 34.0 80.1 8,1 黄 土 A 层 276,9 16.2 30.2 38.7 78.0 12.6 B层 319.0 12.0 27.6 34.0 81.1 14.8

表 4 42℃恒温下土壤水分蒸发模拟试验

三、冷白土的改良和利用

从农业生产的观点来看,冷白土的主要生产障碍是心土层的紧实滞水。因而改良的重点在于深耕破底。深耕深度以30-40厘米为宜。土壤经深耕后,大孔隙率增大,雨季能迅速消除耕层积水,协调水气矛盾。但深耕过深,则有工效低和费用大的缺陷,故难以普遍推广。较可行的办法是逐步深耕带底,加厚耕层,同时实行深沟窄畦,加强田间排水,并增施有机肥

-	
-	
ЛX	•

棉	妆	施	钾	与	栺	株	仝	钾	ъk	亚

(枣阳,大店)

棉	花取样	冷	· É	∄ .	±.		黄	土	
市 祝 取 存 財 及 部 位	含 K ₂ O %		K ₂ O/N		含 K ₂ O %		K ₂ O/N		
HJ	, , , , , , , , , , , , , , , , , , ,	施钾	· 对 照	施钾	对 照	施钾	对 照	施钾	对照
一九	苗期棉株	2,42	1,97	0.64	0.54				
八	蛮 拥棉 株	2,15	1,23	0.89	0.54	1.29	1.86	0.40	0.58
八二年_	铃期棉株	1.98	2.10	1.19	0.97	1.01	1,11	1.13	1.11
九	苗期棉株	1.85	1.23	0.54	0.33	2.03	2.09	0.60	0.62
八	當期叶枝	2.88	2,18	0.86	0,63	2.20	2,10	0.71	0.69
八三年	铃期叶片	1.56	0.67	0.78	0.28	1.89	1.87	0.58	0.57

(下转第18页)

四、结 论

本文对鄂东南地区由页岩、花岗岩和第四纪红色粘土三种母质发育的9个剖面的理 化 性质进行了分析和对比、结果表明:

- (1) 不同母质发育的红壤在质地上存在着差异,第四纪红色粘土发育的 最 粘,花 岗 岩 发育的次之,而页岩发育的最砂。
- (2) 本区红壤的pH为5.0左右, 盐基饱和度在30-45%之间。发育于页岩上的红壤盐基 饱和度较高。
- (3)粘粒 SiO_2/Al_2O_3 因母质不同而异,一般在2.2一3.0之间,页岩发育的红壤其值较高粘土矿物为高岭石、蛭石和水云母混存,花岗岩发育的红壤中高岭石含量较高。
- (4) 土体铁的游离度变化在39.94—58.16%之间,铁的活化度变化在4.5—12.4%之间,发育于页岩上的红壤,铁的活化度较高。
- (5) 腐殖质组成以富里酸为主,胡敏酸/富里酸比值均小于1,发育于页岩上的红 壤 其值最高。
- (6) 从以上研究结果可见,鄂东南地区发育于花岗岩和第四纪红色粘土的土壤具有典型 红墩的特性,而发育于页岩上的土壤具有由红壤向黄棕壤过渡的特性。

参考文献

- [1]李庆逸主编,中国红墩,第6、18页,科学出版社,1985。
- [2] 龚子同等编, 华中亚热带土壤, 第53、239页, 湖南科学技术出版社, 1983。
- 〔3〕中国科学院南京土塅所主编,中国土壤,第510页,科学出版社;1978。
- (4)红黄堰利用改良区划组,中国红黄堰地区土壤利用改良区划,第22页,农业出版社,1985。
- (5)丘华昌,试论鄂北豫西南黄褐土的某些发生学特性,华中农学院学报,第4期,第50页,1984。

(上接第21页)

料, 以改善土壤结构, 协调水气矛盾。

在利用方式上,凡不宜种植水稻的冷白土可改种棉花等早作物。但需增施钾肥,这是冷白土植棉丰产的关键措施。

冷白土上种植棉花,若在施用适量氮磷肥的基础上增施钾肥,除能增加单株结铃数、铃重和纤维长度外,还能提高各生育期中植株的含钾水平(麦5),增强根系、根韧皮组织的发育,使棉花中后期长势转优,避免早衰;有的地块并减轻了棉花黑根和红叶茎枯病的发生,所以增产效果显著。还有的研究报道指出[4]的施用钾肥可以防治棉花缺钾早衰生理病害。

参考文献

- 〔1〕湖北农业地理编写组,湖北农业地理,第五章,湖北人民出版社,1980。
- [2] 中国科学院南京土壤所土壤分类课题组,中国土壤系统分类初拟,土壤,6:293-294,1985。
- [3] 中国科学院编,中国自然地理,总论册第7章,科学出版社,1985。
- (4) 石家庄地区农科所棉花室,增施钾肥防止棉花早衰,土壤肥料,第1期,1984。