首页 | 官方网站   微博 | 高级检索  
     


Response of cotton root growth and yield to root restriction under various water and nitrogen regimes
Authors:Hong Hai Luo  Xian Ping Tao  Yuan Yuan Hu  Ya Li Zhang  Wang Feng Zhang
Affiliation:1. Key Laboratory of Oasis Eco‐agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, China;2. Center of Agricultural Technique Extension of Manasi County, Manasi, China
Abstract:Water and nitrogen (N) are two major factors limiting cotton growth and yield. The ability of plants to absorb water and nutrients is closely related to the size of the root system and the rooting space. Better understanding of the physiological mechanisms by which cotton (Gossypium hirsutum L.) adapts to water and N supply when rooting volume is restricted would be useful for improving cotton yield. In this study, cotton was grown in soil columns to control rooting depth to either 60 cm (root‐restriction treatment) or 120 cm (no‐root‐restriction treatment). Four water–N combinations were applied to the plants: (1) deficit irrigation and no N fertilizer (W0N0), (2) deficit irrigation and moderate N fertilizer rate (W0N1), (3) moderate irrigation and no N fertilizer (W1N0), and (4) moderate irrigation and moderate N fertilizer rate (W1N1). Results revealed that root restriction reduced root length density (RLD), root volume density (RVD), root mass density (RMD), superoxide dismutase (SOD) activity, nitrate reductase (NR) activity, total plant biomass, and root : shoot ratio. In contrast, root restriction increased aboveground biomass and yield. The RLD, RVD, RMD, and root : shoot ratio decreased in the order W0N0 > W1N0 > W0N1 > W1N1 in both the root‐restriction and no‐root‐restriction treatments. However, the opposite order (i.e., W1N1 > W0N1 > W1N0 > W0N0) was observed for SOD activity, NR activity, aboveground biomass, and seed yield. Our results suggest that, when N and water supplies are adequate, root restriction increases both root activity and the availability of photosynthates to aboveground plant parts. This increases shoot growth, the shoot : root ratio, and yield.
Keywords:Gossypium hirsutum  nutrient acquisition  root architecture  root : shoot ratio
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号