首页 | 本学科首页   官方微博 | 高级检索  
     

基于多层感知机的长白落叶松人工林林分生物量模型
作者姓名:徐奇刚  雷相东  国红  李海奎  李玉堂
作者单位:1.中国林业科学研究院资源信息研究所,北京 100091
基金项目:林业行业公益性科研项目“我国主要林区林地立地质量和生产力评价研究”(201504303)
摘    要:目的神经网络模型能避免林分生物量模型建模时自变量共线性与异方差问题,研究多层感知机在林分生物量模型中的应用,为森林经营单位、区域生物量和碳储量的估算提供方法和依据。方法以长白落叶松人工林为研究对象,利用吉林省一类清查固定样地的917组数据,分别建立了基于传统的对数转化后线性模型和神经网络多层感知机的地上生物量和总生物量模型。使用AIC、决定系数(R2)、均方根误差(RMSE)、相对均方根误差(RMSEr)和平均绝对误差(MAE)来评价模型。结果估计精度最高的模型是输入单元为林分平均胸径(D)?平均高(H)?林分密度指数(S)?海拔(HB)?坡向(PX)?坡位(PW)、2个隐藏层、隐单元数为40?20的神经网络模型,与传统对数转换线性回归模型相比,地上生物量和总生物量模型的调整决定系数(Adj.R2)分别从0.902 1提高到了0.914 1,从0.897 9提高到了0.908 9;RMSEr分别从6.330 5%降低到了5.992 2%,从6.490 1%降低到了6.153 6%。包含立地因子的神经网络模型比未包含立地因子的神经网络模型估计精度略有提升,地上生物量与总生物量的Adj.R2分别提高了0.88%和0.99%,RMSEr分别降低了5.33%和5.46%。结论多层感知机生物量模型的估计精度比传统回归模型略有提高,但它可以避免模型选型和违背传统统计假设的处理等问题,且能够一次性计算地上生物量和总生物量模型,有一定优势。 

关 键 词:长白落叶松   林分生物量   对数转化后线性回归模型   多层感知机模型
收稿时间:2019-01-15
本文献已被 CNKI 等数据库收录!
点击此处可从《北京林业大学学报》浏览原始摘要信息
点击此处可从《北京林业大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号