
陆海杂交种纤维品质和产量相关性状的鉴定与分析
李腾宇,许超,李耀明,苟成飞,洪铸,丁明全,孙晨栋
陆海杂交种纤维品质和产量相关性状的鉴定与分析
Identification and Analysis of Fiber Quality and Yield Related Traits of Interspecific (Gossypium hirsutum L. × G. barbadense L.) Hybrids
【目的】深入研究棉花陆海杂交种纤维品质和产量相关性状杂种优势遗传规律,为培育高产优质陆海杂交种奠定理论基础。【方法】使用12份陆地棉材料和5份海岛棉材料配制陆海杂交种,对海南三亚和浙江临安种植的亲本及F1进行纤维品质和产量性状测定。【结果】陆海杂交种纤维长度、纤维强度普遍具有显著的中亲优势,部分杂交组合具有较强的超亲优势,纤维长度性状在两地间变异系数较小,可以稳定遗传;在产量方面,部分陆海杂交种籽棉产量、皮棉产量和衣分等性状具有中亲优势,但仍显著低于陆地棉亲本。【结论】获得2个5A级优质长绒棉杂交组合T035和T044,筛选到1个海岛棉骨干亲本塔10-280,可为探讨陆海杂交种棉纤维品质杂种优势遗传规律提供有价值数据。
[Objective] The aim of this study is to study the hereditary of heterosis of fiber quality and yield-related traits in the upland-island interspecific hybrids, and breed new interspecific hybrid varieties with high yield and fine fiber quality. [Method] In this study, 12 upland cotton materials and 5 sea-island cotton materials were selected to determine the fiber quality and yield traits of their parents and F1 in Lin’an, Zhejiang and Sanya, Hainan. [Result] It was found that fiber length and fiber strength of F1 (Gossypium hirsutum × G. barbadense) generally had significant mid-parent heterosis (MPH), some hybrid combinations showed strong over-parent heterosis (OPH), fiber length had a small coefficient of variation between the two places and could be stably inherited. And in terms of yield, seed cotton weight, lint weight, and lint percentage of some upland-island hybrids had MPH, but they were still significantly lower than those of upland cotton parents. [Conclusion] Two long-staple cotton hybrid combinations T035 and T044 with 5A grade high-quality were obtained, and an excellent material of G. barbadense Ta10-280 was screened. This study provides valuable data for the genetic law of fiber quality heterosis of upland-island hybrid cotton.
棉花 / 陆海杂交种 / 杂种优势 / 纤维品质 / 产量相关性状 {{custom_keyword}} /
cotton / G. hirsutum L. × G. barbadense L. hybrid / heterosis / fiber quality / yield traits {{custom_keyword}} /
表1 杂交组合所用亲本材料名称Table 1 The materials used in hybridization combinations |
亲本编号 | 材料 | 亲本编号 | 材料 | |
Parent numbers | Materials | Parent numbers | Materials | |
A01 | TM-1 | A10 | 豫棉19 | |
A02 | 邯0904 | Yumian 19 | ||
Han0904 | A11 | 川农72318 | ||
A03 | 华中97-5017 | Chuannong72318 | ||
Huazhong97-5017 | A12 | SF06 | ||
A04 | 晋棉35号 | B01 | 海7124 | |
Jinmian 35 | Hai7124 | |||
A05 | 辽棉14号 | B02 | 新海10号 | |
Liaomian 14 | Xinhai 10 | |||
A06 | 鲁原343 | B03 | 阿长599 | |
Luyuan343 | Achang599 | |||
A07 | 巴州5628 | B04 | 苏联棉B69 | |
Bazhou5628 | Sulian B69 | |||
A08 | 肖县133 | B05 | 塔10-280 | |
Xiaoxian133 | Ta10-280 | |||
A09 | 新陆早7号 | |||
Xinluzao 7 |
表2 陆海杂交棉纤维品质性状分析(三亚)Table 2 Analysis of fiber quality related traits in G. hirsutum×G. barbadense hybrid (Sanya) |
组合编号 Combina- tions numbers | 组合 Combina- tions | 纤维长度FL | 断裂比强度BT | 长度整齐度指数UI | 马克隆值MIC | 断裂伸长率BE | |||||||||||||||||||||||||
数值Value/ mm | 中亲 优势值 MPH/% | 数值Value/(cN·tex-1) | 中亲 优势值 MPH/% | 数值Value/ % | 中亲 优势值 MPH/% | 数值Value | 中亲 优势值 MPH/% | 数值Value/ % | 中亲 优势值 MPH/% | ||||||||||||||||||||||
T001 | A01/B01 | 34.9** | 15.56 | 37.6** | 19.37 | 85.5** | 4.01 | 3.0* | -0.10 | 5.3* | -13.82 | ||||||||||||||||||||
T002 | A02/B01 | 36.0** | 8.43 | 35.9* | 1.89 | 85.0 | 0.53 | 3.3** | -0.18 | 5.3* | -7.83 | ||||||||||||||||||||
T003 | A03/B01 | 34.8** | 7.74 | 36.8 | 0.59 | 84.7 | -0.59 | 3.4** | -0.14 | 5.4 | -6.09 | ||||||||||||||||||||
T004 | A04/B01 | 35.0** | 13.45 | 37.5** | 15.74 | 85.0 | 0.18 | 3.3* | -0.13 | 5.2* | -11.11 | ||||||||||||||||||||
T005 | A06/B01 | 35.2** | 5.07 | 35.7* | 1.52 | 84.0 | -0.59 | 3.2 | -0.09 | 6.6* | 10.92 | ||||||||||||||||||||
T006 | A07/B01 | 34.4** | 7.50 | 37.7** | 7.67 | 83.7* | -1.53 | 3.5* | -0.04 | 6.7* | 13.56 | ||||||||||||||||||||
T007 | A08/B01 | 33.5* | 1.82 | 34.8** | -2.75 | 83.0 | -0.54 | 3.2** | -0.15 | 6.7* | 17.54 | ||||||||||||||||||||
T008 | A09/B01 | 32.8** | 12.91 | 39.9** | 21.89 | 85.0** | 3.41 | 3.0** | -0.23 | 5.5** | -7.56 | ||||||||||||||||||||
T009 | A10/B01 | 32.2** | 5.06 | 33.6 | 0.00 | 81.8 | -0.12 | 3.3** | -0.21 | 5.7 | -4.20 | ||||||||||||||||||||
T010 | A11/B01 | 32.4** | 5.88 | 36.6** | 13.72 | 84.6* | 2.98 | 3.1* | -0.06 | 6.4 | 6.67 | ||||||||||||||||||||
T011 | A12/B01 | 33.2** | 6.24 | 40.7** | 16.50 | 85.3 | 1.19 | 3.2** | -0.24 | 5.7 | -5.00 | ||||||||||||||||||||
T012 | A01/B02 | 34.0** | 11.48 | 33.9** | 10.66 | 84.3** | 1.69 | 3.1 | -0.02 | 5.1** | -17.07 | ||||||||||||||||||||
T013 | A02/B02 | 37.3** | 11.34 | 37.7** | 9.69 | 85.8* | 0.65 | 3.2* | -0.16 | 5.0* | -13.04 | ||||||||||||||||||||
T014 | A03/B02 | 33.8* | 3.68 | 36.1* | 1.06 | 84.1** | -2.10 | 3.4* | -0.09 | 6.5* | 13.04 | ||||||||||||||||||||
T015 | A04/B02 | 35.4** | 13.64 | 38.0** | 20.50 | 83.6* | -2.28 | 3.4* | -0.06 | 5.5 | -5.98 | ||||||||||||||||||||
T016 | A05/B02 | 36.4** | 13.57 | 38.7** | 20.43 | 87.2* | 2.89 | 3.2** | -0.20 | 6.2 | 1.64 | ||||||||||||||||||||
T017 | A06/B02 | 35.7** | 5.62 | 38.4** | 11.95 | 86.7 | 1.76 | 3.3 | 0.00 | 8.0** | 34.45 | ||||||||||||||||||||
T018 | A07/B02 | 35.8** | 10.84 | 31.5** | -7.76 | 84.6* | -1.28 | 3.2* | -0.07 | 6.7* | 13.56 | ||||||||||||||||||||
T019 | A08/B02 | 35.9** | 8.13 | 30.8** | -11.80 | 84.7** | 0.65 | 3.2** | -0.10 | 5.9 | 3.51 | ||||||||||||||||||||
T020 | A09/B02 | 33.2** | 13.12 | 35.6** | 11.70 | 85.2** | 2.77 | 3.0* | -0.19 | 5.8 | -2.52 | ||||||||||||||||||||
T021 | A10/B02 | 36.1** | 16.64 | 35.7** | 9.06 | 82.8 | 0.24 | 3.4* | -0.15 | 6.7* | 12.61 | ||||||||||||||||||||
T022 | A11/B02 | 33.9** | 9.71 | 35.8** | 14.30 | 83.9* | 1.27 | 3.2 | 0.03 | 5.7 | -5.00 | ||||||||||||||||||||
T023 | A12/B02 | 36.7** | 16.32 | 34.8* | 2.14 | 86.4** | 1.65 | 3.4** | -0.15 | 6.8* | 13.33 | ||||||||||||||||||||
T024 | A02/B03 | 37.1** | 11.75 | 32.6* | -2.98 | 83.8* | -0.89 | 3.7 | -0.01 | 6.2 | -1.59 | ||||||||||||||||||||
T025 | A03/B03 | 33.3* | 3.10 | 39.6** | 13.30 | 84.6 | -0.70 | 3.6 | -0.03 | 5.0** | -20.63 | ||||||||||||||||||||
T026 | A05/B03 | 36.0** | 13.39 | 41.5** | 32.31 | 87.3** | 3.87 | 2.9** | -0.27 | 5.1 | -23.31 | ||||||||||||||||||||
T027 | A08/B03 | 39.3** | 19.45 | 47.4** | 40.51 | 86.9** | 4.13 | 3.6 | 0.03 | 6.8* | 8.80 | ||||||||||||||||||||
T028 | A09/B03 | 32.9** | 13.25 | 36.1** | 16.08 | 85.8** | 4.38 | 3.2* | -0.12 | 6.7 | 3.08 | ||||||||||||||||||||
T029 | A10/B03 | 36.0** | 17.46 | 40.3** | 26.08 | 85.7** | 4.64 | 2.9 | -0.27 | 6.8 | 4.62 | ||||||||||||||||||||
T030 | A11/B03 | 35.7** | 16.67 | 40.4** | 32.24 | 86.4** | 5.17 | 3.2 | 0.05 | 6.5 | -0.76 | ||||||||||||||||||||
T031 | A12/B03 | 34.9** | 11.68 | 35.7** | 7.21 | 84.4 | 0.12 | 3.7* | -0.06 | 6.6 | 0.76 | ||||||||||||||||||||
T032 | A01/B04 | 35.6** | 16.72 | 37.7** | 24.22 | 85.9** | 5.40 | 3.4** | 0.13 | 5.4** | -12.20 | ||||||||||||||||||||
T033 | A02/B04 | 36.8** | 9.85 | 39.9** | 17.06 | 85.9* | 2.44 | 3.5 | -0.04 | 6.9* | 20.00 | ||||||||||||||||||||
T034 | A03/B04 | 36.8** | 12.88 | 36.9* | 4.13 | 85.3 | 0.95 | 3.5 | -0.03 | 6.7* | 16.52 | ||||||||||||||||||||
T035 | A04/B04 | 37.6** | 20.71 | 40.6** | 29.92 | 84.2 | 0.06 | 3.7 | 0.70 | 6.8* | 16.24 | ||||||||||||||||||||
T036 | A05/B04 | 37.8** | 17.94 | 37.6** | 18.05 | 87.8** | 5.34 | 3.2** | -0.17 | 5.7 | -6.56 | ||||||||||||||||||||
T037 | A06/B04 | 37.7** | 11.54 | 36.8** | 8.19 | 86.8* | 3.58 | 3.2 | 0.02 | 6.3 | 5.88 | ||||||||||||||||||||
T038 | A07/B04 | 36.5** | 13.00 | 35.6** | 5.12 | 82.7** | -1.90 | 3.4 | 0.03 | 7.0** | 18.64 | ||||||||||||||||||||
T039 | A08/B04 | 35.7** | 7.53 | 34.5 | -0.39 | 83.9* | 1.39 | 3.0** | -0.12 | 6.5* | 14.04 | ||||||||||||||||||||
T040 | A09/B04 | 33.9** | 15.50 | 34.8* | 10.18 | 87.1** | 6.87 | 3.4 | -0.04 | 7.3** | 22.69 | ||||||||||||||||||||
T041 | A10/B04 | 34.9** | 12.76 | 35.0** | 7.86 | 82.4* | 1.48 | 3.3* | -0.14 | 6.7* | 12.61 | ||||||||||||||||||||
T042 | A11/B04 | 35.0** | 13.27 | 35.1** | 13.10 | 83.0* | 1.90 | 3.6** | 0.22 | 6.7* | 11.67 | ||||||||||||||||||||
T043 | A12/B04 | 36.8** | 16.64 | 39.3** | 16.32 | 84.3 | 0.84 | 3.3** | -0.14 | 7.3* | 21.67 | ||||||||||||||||||||
T044 | A02/B05 | 37.5** | 13.46 | 39.8** | 13.00 | 87.0** | 2.53 | 3.7 | -0.03 | 6.7* | 14.53 | ||||||||||||||||||||
T045 | A03/B05 | 35.4** | 10.11 | 39.3** | 7.47 | 85.0* | -0.58 | 3.6 | -0.04 | 5.3 | -9.40 | ||||||||||||||||||||
T046 | A04/B05 | 37.9** | 23.45 | 46.3** | 42.97 | 85.0 | -0.18 | 3.3* | -0.08 | 6.6* | 10.92 | ||||||||||||||||||||
T047 | A05/B05 | 35.7** | 12.97 | 40.3** | 22.18 | 85.0* | 0.77 | 3.6* | -0.10 | 7.0** | 12.90 | ||||||||||||||||||||
T048 | A06/B05 | 38.1** | 14.24 | 46.5** | 33.67 | 87.8 | 3.54 | 3.1 | -0.06 | 5.9 | -2.48 | ||||||||||||||||||||
T049 | A07/B05 | 35.0** | 9.89 | 37.6** | 7.43 | 84.1* | -1.41 | 3.5 | 0.01 | 6.6 | 10.00 | ||||||||||||||||||||
T050 | A09/B05 | 33.1** | 13.84 | 33.9** | 3.61 | 82.6 | 0.12 | 3.1** | -0.16 | 6.8* | 12.40 | ||||||||||||||||||||
T051 | A10/B05 | 36.6** | 20.00 | 41.5** | 23.57 | 85.0* | 3.41 | 3.4** | -0.15 | 6.7 | 10.74 | ||||||||||||||||||||
T052 | A11/B05 | 33.6** | 10.34 | 36.9** | 14.70 | 83.8** | 1.64 | 3.6** | 0.16 | 6.6 | 8.20 | ||||||||||||||||||||
T053 | A12/B05 | 34.1** | 9.65 | 39.6** | 13.40 | 84.3 | -0.35 | 3.4** | -0.15 | 6.5 | 6.56 |
注:*和**分别表示杂交F1与中亲值差异显著(P<0.05)、极显著(P<0.01)。 | |
Note: * and ** mean the significant difference from MPH at the 0.05 and 0.01 probability levels, respectively. |
表3 陆海杂交棉纤维品质性状分析(临安)Table 3 Analysis of fiber quality traits in G. hirsutum×G. barbadense hybrid (Lin’an) |
组合编号 Combina- tions numbers | 组合 Combina- tions | 纤维长度FL | 断裂比强度BT | 长度整齐度指数UI | 马克隆值MIC | 断裂伸长率BE | |||||||||
数值Value/ mm | 中亲 优势值 MPH/% | 数值Value/(cN·tex-1) | 中亲 优势值 MPH/% | 数值Value/ % | 中亲 优势值 MPH/% | 数值Value | 中亲 优势值 MPH/% | 数值Value/ % | 中亲 优势值 MPH/% | ||||||
T006 | A07/B01 | 33.7** | 11.59 | 36.1** | 13.88 | 83.5 | -0.60 | 3.6* | 7.93 | 6.8* | 13.56 | ||||
T025 | A03/B03 | 33.9** | 13.45 | 35.9** | 20.57 | 83.3 | 0.85 | 3.6 | 2.03 | 6.8* | 8.80 | ||||
T027 | A08/B03 | 35.5** | 23.05 | 38.7** | 27.28 | 85.0 | 1.49 | 3.6 | -0.04 | 6.9** | 22.69 | ||||
T033 | A02/B04 | 35.8** | 14.38 | 39.3** | 18.86 | 84.7 | 0.89 | 4.3 | -0.04 | 6.8* | 20.00 | ||||
T034 | A03/B04 | 33.5** | 18.17 | 38.0** | 23.32 | 85.8 | 2.51 | 3.7* | -0.19 | 6.9 | -2.52 | ||||
T035 | A04/B04 | 37.0** | 16.32 | 37.7** | 15.86 | 85.0 | 0.41 | 3.8 | -0.01 | 6.9 | -1.59 | ||||
T044 | A02/B05 | 37.1** | 20.85 | 41.9** | 28.48 | 86.6* | 3.22 | 4.0 | 0.07 | 7.0* | 16.24 | ||||
T045 | A03/B05 | 34.0* | 12.55 | 36.9** | 14.01 | 84.4 | 0.96 | 3.7** | 0.22 | 6.9* | 11.67 | ||||
T047 | A05/B05 | 35.2* | 12.10 | 40.1** | 21.48 | 85.7 | 1.90 | 3.9* | -0.10 | 7.0** | 12.90 | ||||
T049 | A07/B05 | 34.8* | 10.30 | 37.1** | 11.53 | 84.7 | 1.81 | 3.6** | -0.12 | 6.8* | 14.04 | ||||
T052 | A11/B05 | 35.4** | 12.38 | 39.9** | 14.61 | 84.5 | -0.29 | 3.9 | 0.02 | 6.9 | 5.88 |
注:*和**分别表示与中亲值差异显著(P<0.05)、极显著(P<0.01)。 | |
Note: * and ** mean the significant difference from MPH at the 0.05 and 0.01 probability levels, respectively. |
表4 陆海杂交棉产量性状杂种优势(三亚)Table 4 Analysis of field traits in G. hirsutum×G. barbadense hybrid (Sanya) |
组合编号 Combina- tions numbers | 组合 Combina- tions | 有效铃数BN | 籽棉质量SCW | 皮棉质量LW | 衣分LP | 籽指SI | |||||||||||
数值Value | 中亲 优势值 MPH/% | 数值Value/g | 中亲 优势值 MPH/% | 数值Value/g | 中亲 优势值 MPH/% | 数值Value/ % | 中亲 优势值 MPH/% | 数值Value/ g | 中亲 优势值 MPH/% | ||||||||
T001 | A01/B01 | 13.3* | 28.69 | 200.40** | -11.82 | 54.35** | -31.96 | 27.12** | -21.74 | 12.15 | 14.14 | ||||||
T002 | A02/B01 | 16.0* | 21.49 | 208.25** | 19.60 | 71.55** | 13.48 | 34.36 | -3.86 | 15.13* | 24.17 | ||||||
T003 | A03/B01 | 14.3 | 11.41 | 179.55* | -1.87 | 70.40** | 14.05 | 39.21** | 15.87 | 13.48 | 11.45 | ||||||
T004 | A04/B01 | 19.0 | 9.60 | 133.35** | -20.46 | 63.25 | 1.73 | 47.43** | 29.77 | 13.36 | 20.20 | ||||||
T005 | A06/B01 | 12.3 | 11.82 | 175.70** | 11.96 | 71.50** | 16.54 | 40.69 | 5.63 | 13.86 | 14.36 | ||||||
T006 | A07/B01 | 12.7 | 5.83 | 146.90** | 15.46 | 71.05** | 56.76 | 48.37** | 34.89 | 14.15* | 25.00 | ||||||
T007 | A08/B01 | 12.0* | -21.75 | 158.55** | 15.79 | 81.10** | 65.26 | 51.15** | 42.54 | 12.76 | 9.39 | ||||||
T008 | A09/B01 | 22.3** | 63.13 | 168.76** | 14.34 | 75.05** | 46.65 | 44.47** | 28.51 | 12.32 | 13.29 | ||||||
T009 | A10/B01 | 14.3* | 26.16 | 186.25** | -5.60 | 55.45** | -34.22 | 29.77** | -26.69 | 13.19 | 16.98 | ||||||
T010 | A11/B01 | 16.0 | 9.07 | 155.75 | -0.78 | 70.15** | 18.60 | 45.04** | 20.91 | 12.67* | 28.04 | ||||||
T011 | A12/B01 | 14.3 | -7.74 | 169.30** | 10.10 | 64.10* | -3.68 | 37.86** | -10.77 | 11.77 | 3.16 | ||||||
T012 | A01/B02 | 7.3** | -40.82 | 213.05** | -12.22 | 78.60** | -5.36 | 36.89* | 10.14 | 14.13* | 24.00 | ||||||
T013 | A02/B02 | 15.3 | 0.86 | 196.25** | 3.53 | 67.05 | 1.25 | 34.17 | -1.19 | 15.20** | 17.51 | ||||||
T014 | A03/B02 | 15.3 | 3.13 | 216.25** | 9.00 | 76.55** | 17.95 | 35.40* | 8.32 | 14.75* | 14.83 | ||||||
T015 | A04/B02 | 16.0* | -17.25 | 121.05** | -33.88 | 60.90** | -6.81 | 50.31** | 42.16 | 13.58 | 14.45 | ||||||
T016 | A05/B02 | 9.7** | -41.21 | 222.90** | 36.87 | 68.75** | 17.22 | 30.84** | -14.92 | 13.98 | 8.92 | ||||||
T017 | A06/B02 | 17.0** | 30.77 | 184.65** | 7.14 | 70.23** | 8.84 | 38.03 | 1.79 | 14.44 | 12.20 | ||||||
T018 | A07/B02 | 12.0 | -14.29 | 128.90** | -9.64 | 82.30** | 69.69 | 63.85** | 84.01 | 13.80 | 14.33 | ||||||
T019 | A08/B02 | 24.5** | 41.33 | 184.70** | 21.23 | 81.70** | 56.36 | 44.23** | 27.37 | 12.18 | -1.89 | ||||||
T020 | A09/B02 | 13.3* | -15.12 | 170.40** | 4.52 | 79.25** | 45.81 | 46.51** | 39.06 | 11.11 | -4.43 | ||||||
T021 | A09/B02 | 16.3* | 22.23 | 143.90** | -32.35 | 64.55** | -26.21 | 44.86** | 13.71 | 12.89 | 7.19 | ||||||
T022 | A11/B02 | 21.0** | 25.97 | 164.35** | -4.67 | 70.40** | 12.96 | 42.84** | 18.70 | 12.14 | 14.04 | ||||||
T023 | A12/B02 | 12.7** | -27.43 | 212.65** | 25.68 | 70.95 | 1.76 | 33.36** | -19.17 | 12.96 | 6.58 | ||||||
T024 | A02/B03 | 17.0** | 39.69 | 214.55** | 32.01 | 66.20** | 17.01 | 30.86* | -7.89 | 15.46* | 25.84 | ||||||
T025 | A03/B03 | 14.3* | 20.83 | 206.45** | 20.47 | 70.15** | 26.97 | 33.98* | 7.51 | 15.75* | 29.15 | ||||||
T026 | A05/B03 | 15.3 | 13.33 | 221.15** | 62.82 | 59.23** | 20.88 | 26.78** | -23.87 | 14.84* | 21.79 | ||||||
T027 | A08/B03 | 11.3* | -21.17 | 178.30** | 42.27 | 62.90** | 47.65 | 35.28 | 4.84 | 13.16 | 11.86 | ||||||
T028 | A09/B03 | 12.7 | 0.24 | 170.95** | 25.70 | 63.05** | 41.05 | 36.88** | 13.93 | 14.14* | 28.84 | ||||||
T029 | A10/B03 | 11.3 | 9.34 | 173.85** | -6.38 | 71.60** | -8.00 | 41.18* | 7.31 | 12.85 | 12.97 | ||||||
T030 | A11/B03 | 13.3 | -2.71 | 176.80** | 21.62 | 60.55** | 14.95 | 34.25 | -2.18 | 14.15** | 41.57 | ||||||
T031 | A12/B03 | 16.0 | 10.34 | 173.25** | 21.86 | 74.05** | 23.26 | 42.74* | 6.33 | 13.24 | 15.03 | ||||||
T032 | A01/B04 | 15.0* | 26.74 | 206.25** | -7.09 | 57.95** | -25.13 | 28.10** | -17.61 | 14.68* | 29.51 | ||||||
T033 | A02/B04 | 11.7* | -20.25 | 193.15** | 14.39 | 64.65* | 8.43 | 32.44* | -7.81 | 13.01 | 1.05 | ||||||
T034 | A03/B04 | 12.7 | -11.41 | 176.05 | -0.93 | 66.15** | 11.65 | 37.57** | 12.86 | 14.35 | 12.24 | ||||||
T035 | A04/B04 | 19.3 | 2.47 | 158.90* | -2.14 | 70.50** | 18.09 | 44.37** | 23.25 | 13.85 | 17.32 | ||||||
T036 | A05/B04 | 21.3** | 33.13 | 160.55** | 12.94 | 74.35** | 40.28 | 46.31** | 25.64 | 13.05 | 2.15 | ||||||
T037 | A06/B04 | 18.7** | 49.60 | 209.80** | 38.34 | 59.60 | 1.23 | 28.41** | -25.18 | 12.68 | -1.01 | ||||||
T038 | A07/B04 | 14.7 | 8.89 | 134.30** | 10.13 | 56.25** | 31.27 | 41.88** | 18.61 | 13.58 | 13.07 | ||||||
T039 | A08/B04 | 9.3** | -44.76 | 147.95** | 12.38 | 56.15** | 20.49 | 37.95* | 7.40 | 13.13 | 6.27 | ||||||
T040 | A09/B04 | 11.3** | -25.51 | 179.15** | 25.87 | 69.80** | 43.33 | 38.96** | 14.40 | 13.73 | 18.72 | ||||||
T041 | A10/B04 | 11.7 | -8.84 | 216.55** | 12.77 | 67.40** | -17.63 | 31.12** | -22.32 | 13.77 | 15.09 | ||||||
T042 | A11/B04 | 14.7 | -9.09 | 212.10** | 39.82 | 70.80** | 24.92 | 33.38* | -9.05 | 14.16* | 33.77 | ||||||
T043 | A12/B04 | 13.3* | -21.76 | 197.30** | 32.86 | 87.80** | 37.03 | 44.50* | 6.26 | 13.69 | 13.14 | ||||||
T044 | A02/B05 | 13.0 | 6.82 | 177.95** | 4.95 | 83.70** | 34.91 | 47.04** | 30.16 | 13.50 | 6.85 | ||||||
T045 | A03/B05 | 9.7 | -18.04 | 184.60** | 3.48 | 70.85** | 16.69 | 38.38** | 12.09 | 14.38 | 14.63 | ||||||
T046 | A04/B05 | 15.3 | -6.34 | 181.55** | 11.33 | 70.15** | 14.69 | 38.64 | 4.57 | 14.78* | 27.80 | ||||||
T047 | A05/B05 | 19.0** | 40.74 | 218.05** | 52.64 | 76.90** | 41.19 | 35.27* | -6.72 | 14.88* | 18.71 | ||||||
T048 | A06/B05 | 16.7** | 67.00 | 209.20** | 37.32 | 60.30 | -0.07 | 28.82** | -25.95 | 14.18 | 12.81 | ||||||
T049 | A07/B05 | 9.3 | -15.45 | 190.95** | 55.69 | 87.35** | 97.11 | 45.74** | 26.14 | 13.48 | 14.53 | ||||||
T050 | A09/B05 | 9.0 | -28.97 | 162.55** | 13.65 | 77.10** | 53.69 | 47.43** | 35.49 | 10.92 | -3.58 | ||||||
T051 | A10/B05 | 15.0** | 45.14 | 186.40** | -3.28 | 56.95** | -31.62 | 30.55** | -25.51 | 13.24 | 12.92 | ||||||
T052 | A11/B05 | 19.7** | 44.11 | 192.50** | 26.31 | 75.10** | 29.17 | 39.01 | 3.61 | 12.18 | 17.74 | ||||||
T053 | A12/B05 | 19.7** | 35.86 | 182.40** | 22.25 | 82.55** | 25.95 | 45.26* | 5.67 | 13.58 | 14.50 |
注:*和**分别表示与中亲值差异显著(P<0.05)、极显著(P<0.01)。 | |
Note: * and ** mean the significant difference from MPH at the 0.05 and 0.01 probability levels, respectively. |
表5 陆海杂交棉产量性状杂种优势(临安)Table 5 Analysis of field traits in G. hirsutum × G. barbadense hybrid (Lin’an) |
组合编号 Combina- tions numbers | 组合 Combina- tions | 有效铃数BN | 籽棉质量SCW | 皮棉质量LW | 衣分LP | 籽指SI | |||||||||
数值Value | 中亲 优势值 MPH/% | 数值Value/g | 中亲 优势值 MPH/% | 数值Value/g | 中亲 优势值 MPH/% | 数值Value/ % | 中亲 优势值 MPH/% | 数值Value/g | 中亲 优势值 MPH/% | ||||||
T006 | A07/B01 | 14** | 47.37 | 114.59** | -25.97 | 36.81** | -25.02 | 32.12* | 7.64 | 10.48 | -2.96 | ||||
T025 | A03/B03 | 10* | 33.33 | 115.29** | -27.14 | 39.29** | -12.42 | 34.08** | 32.71 | 10.55 | -4.87 | ||||
T027 | A08/B03 | 6* | -29.41 | 133.27 | 12.54 | 33.67 | 3.66 | 25.26 | -8.18 | 12.79 | 20.09 | ||||
T033 | A02/B04 | 15** | 50.00 | 160.09 | 1.08 | 55.82 | -1.53 | 34.87 | 4.32 | 9.62 | -9.25 | ||||
T034 | A03/B04 | 13** | 85.71 | 141.05** | 16.10 | 38.24** | 20.10 | 27.11 | 4.37 | 11.41 | 5.80 | ||||
T035 | A04/B04 | 13** | 18.18 | 142.87** | -8.13 | 44.95** | -25.97 | 31.46** | -12.05 | 13.97* | 28.05 | ||||
T044 | A02/B05 | 16** | 68.42 | 148.62 | -0.58 | 50.87** | -11.09 | 34.23 | -3.17 | 11.51 | 11.96 | ||||
T045 | A03/B05 | 6** | -50.00 | 120.19** | -21.47 | 36.7** | -32.52 | 30.53* | -8.39 | 11.86 | 13.82 | ||||
T047 | A05/B05 | 13** | 52.94 | 154.98** | 10.80 | 50.07* | -5.71 | 32.31** | -11.43 | 11.87 | 12.62 | ||||
T049 | A07/B05 | 4** | -57.90 | 120.12** | -21.17 | 32.14** | -33.42 | 26.76** | -12.51 | 11.85 | 4.82 | ||||
T052 | A11/B05 | 15** | 87.50 | 116.32** | -19.00 | 40.61 | -1.37 | 34.91** | 22.68 | 12.06 | 8.16 |
注:上标*和**分别表示与中亲值差异显著(P<0.05)、极显著(P<0.01)。 | |
Note: Superscript * and ** mean the significant difference from MPH at the 0.05 and 0.01 probability levels, respectively. |
表6 2个试验点纤维品质及产量性状的表型变异分析Table 6 Phenotypic variation of the fiber quality and field traits at the two trial sites |
试验点 Trial sites | 性状类型 Trait types | 性状 Traits | 最大值 Maximum | 最小值 Minimum | 平均值 Average | 方差 Variance | 标准差 Standard deviation | 变异系数 Coefficient of variation/% | 偏度 Skewness | 峰度 Kurtosis |
三亚Sanya | 纤维品质性状 Fiber quality traits | 纤维长度 FL/mm | 39.3 | 32.2 | 35.39 | 2.73 | 1.65 | 4.67 | 0.01 | -0.59 |
断裂比强度 BT/(cN·tex-1) | 47.4 | 30.8 | 37.60 | 11.24 | 3.35 | 8.91 | 0.84 | 1.50 | ||
长度整齐度指数 UI/% | 87.8 | 81.8 | 84.92 | 2.06 | 1.43 | 1.69 | 0.12 | -0.44 | ||
马克隆值 MIC | 3.7 | 2.9 | 3.32 | 0.05 | 0.21 | 6.43 | 0.04 | -0.69 | ||
断裂伸长率 BE/% | 8.0 | 5.0 | 6.27 | 0.48 | 0.69 | 11.07 | -0.24 | -0.58 | ||
产量 性状 Yield traits | 铃数 BN | 24.5 | 7.3 | 14.68 | 3.62 | 13.13 | 24.68 | 0.48 | 0.15 | |
籽棉质量 SCW/g | 222.9 | 121.05 | 181.80 | 25.61 | 655.78 | 14.09 | -0.37 | -0.43 | ||
皮棉质量 LW/g | 87.8 | 54.35 | 69.57 | 8.45 | 71.46 | 12.15 | 0.16 | -0.55 | ||
衣分 LP/% | 63.85 | 26.78 | 39.05 | 7.40 | 54.71 | 18.94 | 0.59 | 0.90 | ||
籽指 SI/g | 15.75 | 10.92 | 13.55 | 1.04 | 1.08 | 7.66 | -0.29 | 0.11 | ||
临安Lin’an | 纤维品质性状 Fiber quality traits | 纤维长度 FL/mm | 37.1 | 33.5 | 34.99 | 1.13 | 1.27 | 3.22 | 0.29 | -0.59 |
断裂比强度 BT/(cN·tex-1) | 41.95 | 35.9 | 38.34 | 1.86 | 3.46 | 4.85 | 0.50 | -0.28 | ||
长度整齐度指数 UI/% | 86.6 | 83.3 | 84.84 | 0.97 | 0.93 | 1.14 | 0.12 | 0.03 | ||
马克隆值 MIC | 4.8 | 3.5 | 3.86 | 0.39 | 0.16 | 10.17 | 1.54 | 2.37 | ||
断裂伸长率 BE/% | 7.0 | 6.8 | 6.88 | 0.08 | 0.01 | 1.09 | 0.33 | -0.88 | ||
产量 性状 Yield traits | 铃数 BN | 16.0 | 4.0 | 11.36 | 4.20 | 17.66 | 36.98 | -0.80 | -0.94 | |
籽棉质量 SCW/g | 160.09 | 114.59 | 133.40 | 16.98 | 288.23 | 12.73 | 0.29 | -1.59 | ||
皮棉质量 LW/g | 55.82 | 32.14 | 41.74 | 7.67 | 58.78 | 18.37 | 0.66 | -0.70 | ||
衣分 LP/% | 34.91 | 25.26 | 31.24 | 3.45 | 11.90 | 11.04 | -0.67 | -0.96 | ||
籽指 SI/g | 13.97 | 9.62 | 11.63 | 1.17 | 1.38 | 10.08 | 0.26 | 0.80 |
表7 陆海杂交棉纤维品质性状相关性分析Table 7 Correlation analysis of fiber quality traits of G. hirsutum × G. barbadense hybrid cotton |
性状 Traits | 纤维长度 FL | 断裂比强度BT | 长度整齐度指数 UI | 马克隆值 MIC | 断裂伸长率 BE |
纤维长度 FL | 1.000 | ||||
断裂比强度 BT | 0.460** | 1.000 | |||
长度整齐度指数UI | 0.469** | 0.496** | 1.000 | ||
马克隆值 MIC | 0.230 | 0.066 | -0.167 | 1.000 | |
断裂伸长率 BE | 0.170 | 0.011 | -0.072 | 0.270 | 1.000 |
注:**表示相关性极显著。 | |
Note: Superscript ** means significant correlation at the 0.01 probability level, respectively. |
表8 陆海杂交棉产量指标相关性分析Table 8 Correlation analysis of yield traits of G. hirsutum × G. barbadense hybrid cotton |
性状 Traits | 籽指SI | 有效铃数BN | 籽棉质量SCW | 皮棉质量LW | 衣分LP |
籽指 SI | 1.000 | ||||
铃数 BN | -0.075 | 1.000 | |||
籽棉质量 SCW | 0.383* | -0.067 | 1.000 | ||
皮棉质量 LW | -0.100 | 0.026 | 0.024 | 1.000 | |
衣分 LP | -0.331* | 0.067 | -0.769** | 0.601** | 1.000 |
注:*和**表示相关程度达到0.05和0.01水平。 | |
Note: * and ** mean significant correlation at the 0.05 and 0.01 probability levels, respectively. |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
041
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
Interspecific hybrid cottons (Gossypium hirsutum L. x G. barbadense L.) have great both yield and quality potential. This study was conducted to determine potential yields and quality characteristics of hybrid cotton varieties in southeastern Anatolia region of Turkey. The experiment was set out a completely randomized block design with four replications during 2003 and 2004 at University of Dicle, Faculty of Agriculture Experimental Field. Seven interspecific hybrid cotton varieties (48-08, Sevilla, Europe, Ica, Etna, 14-08 and Acalpi) which were obtained from Israel, and commonly grown varieties in this region, non-hybrid cotton varieties, GW Teks and DP-Opal were used as the materials of the study. Difference among the cultivars was significant for all traits except sympodial branch. Maximum number of boll and lint yield was 20.18 n plant(-1) and 1685.8 kg ha(-1) from interspecific hybrid cotton Ica, while interspecific hybrid cotton Europe recorded the lowest number of boll and lint yield. Interspecific hybrid cotton varieties showed higher value for fibre length, fibre fineness and fibre strength than non-hybrid cotton varieties. The longest fibres were obtained from Acalpi and Etna (34.08 and 33.88 mm), while non-hybrid varieties, DP-Opal and GW-Teks, had the lowest fibre length, 28.50 and 30.03 mm, respectively. The finest fibres obtained from Ica and 48-08 (3.42 and 3.45 mic.), the strongest fibres from Etna and Acalpi (40.07 and 40.23 g tex(-1)), and most elongation fibres from Acalpi (8.00%) and Sevilla (7.45%). Lint yield correlated positive and significant with fiber length.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
张天真, 靖深蓉. 棉花雄性不育杂交种选育的理论与实践[M]. 北京: 中国农业出版社, 1998: 25-30.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
任立华, 张天真. 陆地棉七个置换系的遗传评价[J]. 作物学报, 2001, 27(6):993-999. https://doi.org/CNKI:SUN:XBZW.0.2001-06-049
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
贾赵东, 孙敬, 张天真. 利用7个置换系和渐渗系的双列杂交研究海陆杂种的数量性状遗传[J]. 南京农业大学学报, 2006, 29(2):6-10. http://dx.doi.org/10.7685/j.issn.1000-2030.2006.02.002
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
Cotton is an important cash crop worldwide, accounting for a large percentage of world agricultural exports; however, yield per acre is still poor in many countries, including Pakistan. Diallel mating system was used to identify parents for improving within-boll yield and fiber quality parameters. Combining ability analysis was employed to obtain suitable parents for this purpose. The parental genotypes CP-15/2, NIAB Krishma, CIM-482, MS-39, and S-12 were crossed in complete diallel mating under green house conditions during 2009. The F₀ seed of 20 hybrids and five parents were planted in the field in randomized complete block design with three replications during 2010. There were highly significant differences among all F₁ hybrids and their parents. Specific combining ability (SCA) variance was greater than general combining ability (GCA) variance for bolls per plant (9.987), seeds per boll (0.635), seed density (5.672), lint per seed (4.174), boll size (3.69), seed cotton yield (0.315), and lint percentage (0.470), showing predominance of non-additive genes; while seed volume (3.84) was controlled by additive gene action based on maximum GCA variance. Cultivar MS-39 was found to be the best general combiner for seed volume (0.102), seeds per boll (0.448), and lint per seed (0.038) and its utilization produced valuable hybrids, including MS-39 x NIAB Krishma and MS-39 x S-12. The parental line CIM-482 had high GCA effects for boll size (0.33) and seeds per boll (0.90). It also showed good SCA with S-12 and NIAB Krishma for bolls per plant, with CP- 15/2 for boll size, and with MS-39 for seeds per boll. The hybrids, namely, CP-15/2 x NIAB Krishma, NIAB Krishma x S-12, NIAB Krishma x CIM-482, MS-39 x NIAB Krishma, MS-39 x CP-15/2, and S-12 x MS-39 showed promising results. Correlation analysis revealed that seed cotton yield showed significant positive correlation with bolls per plant, boll size and seeds per boll while it showed negative correlation with lint percentage and lint per seed. Seed volume showed significant negative correlation with seed density. Seeds per boll were positively correlated with boll size and negatively correlated with bolls per plant lint percentage and lint per seed. Similarly, lint per seed exhibited positive correlation with lint percentage and boll size showed significantly negative correlation with bolls per plant. Presence of non-additive genetic effects in traits like bolls per plant, seeds per boll, lint per seed, seed cotton yield, and lint percentage is indicative of later generation selection or heterosis breeding may be adopted. For boll size, seed volume and seed density early generation selection may be followed because of the presence of additive gene action. The parental material used in this study and cross combinations obtained from these parents may be exploited in future breeding endeavors.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
姜元华, 许俊伟, 赵可, 等. 甬优系列籼粳杂交稻根系形态与生理特征[J]. 作物学报, 2015, 41(1):89-99. http://dx.chinadoi.cn/10.3724/SP.J.1006.2015.00089
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
中华人民共和国农业部. 棉花纤维品质评价方法: NY/T 1426-2007[S]. 北京: 中国农业出版社, 2007: 6.
Ministry of Agriculture of the People's Republic of China. Evaluation method of cotton fiber quality: NY/T 1426-2007 Beijing: China Agriculture Press, 2007: 6.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
许如根, 吕超, 祝丽, 等. 大麦杂种优势利用研究Ⅰ. F1杂种的离中亲优势和超优亲优势[J]. 作物学报, 2004, 30(7):668-674.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
Upland cotton (Gossypium hirsutum) is the most important natural fiber crop in the world. The overall genetic diversity among cultivated species of cotton and the genetic changes that occurred during their improvement are poorly understood. Here we report a comprehensive genomic assessment of modern improved upland cotton based on the genome-wide resequencing of 318 landraces and modern improved cultivars or lines. We detected more associated loci for lint yield than for fiber quality, which suggests that lint yield has stronger selection signatures than other traits. We found that two ethylene-pathway-related genes were associated with increased lint yield in improved cultivars. We evaluated the population frequency of each elite allele in historically released cultivar groups and found that 54.8% of the elite genome-wide association study (GWAS) alleles detected were transferred from three founder landraces: Deltapine 15, Stoneville 2B and Uganda Mian. Our results provide a genomic basis for improving cotton cultivars and for further evolutionary analysis of polyploid crops.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
崔秀珍, 李哲, 常俊香, 等. 棉花海陆种间杂交品质性状杂种优势及配合力分析[J]. 湖北农业科学, 2008, 47(6):44-46. http://dx.chinadoi.cn/10.3969/j.issn.0439-8114.2008.06.011
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
王巧玲, 李哲. 棉花海陆杂交F1代纤维品质杂种优势及配合力分析[J]. 河南科技学院学报, 2013, 41(3):12-18. http://dx.chinadoi.cn/10.3969/j.issn.1008-7516.2013.03.003
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
张香桂, 周宝良, 陈松, 等. 陆地棉与海岛棉种间杂种优势研究[J]. 江西棉花, 2003, 25(5):25-30. http://dx.chinadoi.cn/10.3969/j.issn.2095-3143.2003.05.006
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
Heterosis is most frequently manifested by the substantially increased vigorous growth of hybrids compared with their parents. Investigating genomic variations in natural populations is essential to understand the initial molecular mechanisms underlying heterosis in plants. Here, we characterized the genomic architecture associated with biomass heterosis in 200 hybrids. The genome-wide heterozygosity of hybrids makes a limited contribution to biomass heterosis, and no locus shows an obvious overdominance effect in hybrids. However, the accumulation of significant genetic loci identified in genome-wide association studies (GWAS) in hybrids strongly correlates with better-parent heterosis (BPH). Candidate genes for biomass BPH fall into diverse biological functions, including cellular, metabolic, and developmental processes and stimulus-responsive pathways. Important heterosis candidates include,, and some genes that encode key factors involved in cell cycle regulation. Interestingly, transcriptomic analyses in representative hybrid combinations reveal that heterosis candidate genes are functionally enriched in stimulus-responsive pathways, including responses to biotic and abiotic stimuli and immune responses. In addition, stimulus-responsive genes are repressed to low-parent levels in hybrids with high BPH, whereas middle-parent expression patterns are exhibited in hybrids with no BPH. Our study reveals a genomic architecture for understanding the molecular mechanisms of biomass heterosis in, in which the accumulation of the superior alleles of genes involved in metabolic and cellular processes improve the development and growth of hybrids, whereas the overall repressed expression of stimulus-responsive genes prioritizes growth over responding to environmental stimuli in hybrids under normal conditions.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
浙江农林大学戎均康、中国农业科学院棉花研究所张永山和褚丽、陕西安康学院田洪云、中国农业科学院棉花研究所南繁育种中心张霞等人对本研究中杂交组合配制及表型鉴定做出重要贡献,特表感谢。
/
〈 |
|
〉 |