陆海杂交种纤维品质和产量相关性状的鉴定与分析

李腾宇,许超,李耀明,苟成飞,洪铸,丁明全,孙晨栋

PDF(1751 KB)
PDF(1751 KB)
棉花学报 ›› 2020, Vol. 32 ›› Issue (4) : 348-359. DOI: 10.11963/1002-7807.ltyscd.20200612
研究与进展

陆海杂交种纤维品质和产量相关性状的鉴定与分析

作者信息 +

Identification and Analysis of Fiber Quality and Yield Related Traits of Interspecific (Gossypium hirsutum L. × G. barbadense L.) Hybrids

Author information +
History +

摘要

【目的】深入研究棉花陆海杂交种纤维品质和产量相关性状杂种优势遗传规律,为培育高产优质陆海杂交种奠定理论基础。【方法】使用12份陆地棉材料和5份海岛棉材料配制陆海杂交种,对海南三亚和浙江临安种植的亲本及F1进行纤维品质和产量性状测定。【结果】陆海杂交种纤维长度、纤维强度普遍具有显著的中亲优势,部分杂交组合具有较强的超亲优势,纤维长度性状在两地间变异系数较小,可以稳定遗传;在产量方面,部分陆海杂交种籽棉产量、皮棉产量和衣分等性状具有中亲优势,但仍显著低于陆地棉亲本。【结论】获得2个5A级优质长绒棉杂交组合T035和T044,筛选到1个海岛棉骨干亲本塔10-280,可为探讨陆海杂交种棉纤维品质杂种优势遗传规律提供有价值数据。

Abstract

[Objective] The aim of this study is to study the hereditary of heterosis of fiber quality and yield-related traits in the upland-island interspecific hybrids, and breed new interspecific hybrid varieties with high yield and fine fiber quality. [Method] In this study, 12 upland cotton materials and 5 sea-island cotton materials were selected to determine the fiber quality and yield traits of their parents and F1 in Lin’an, Zhejiang and Sanya, Hainan. [Result] It was found that fiber length and fiber strength of F1 (Gossypium hirsutum × G. barbadense) generally had significant mid-parent heterosis (MPH), some hybrid combinations showed strong over-parent heterosis (OPH), fiber length had a small coefficient of variation between the two places and could be stably inherited. And in terms of yield, seed cotton weight, lint weight, and lint percentage of some upland-island hybrids had MPH, but they were still significantly lower than those of upland cotton parents. [Conclusion] Two long-staple cotton hybrid combinations T035 and T044 with 5A grade high-quality were obtained, and an excellent material of G. barbadense Ta10-280 was screened. This study provides valuable data for the genetic law of fiber quality heterosis of upland-island hybrid cotton.

关键词

棉花 / 陆海杂交种 / 杂种优势 / 纤维品质 / 产量相关性状

Keywords

cotton / G. hirsutum L. × G. barbadense L. hybrid / heterosis / fiber quality / yield traits

引用本文

导出引用
李腾宇 , 许超 , 李耀明 , 苟成飞 , 洪铸 , 丁明全 , 孙晨栋. 陆海杂交种纤维品质和产量相关性状的鉴定与分析[J]. 棉花学报, 2020, 32(4): 348-359. https://doi.org/10.11963/1002-7807.ltyscd.20200612
Li Tengyu , Xu Chao , Li Yaoming , Gou Chengfei , Hong Zhu , Ding Mingquan , Sun Chendong. Identification and Analysis of Fiber Quality and Yield Related Traits of Interspecific (Gossypium hirsutum L. × G. barbadense L.) Hybrids[J]. Cotton Science, 2020, 32(4): 348-359. https://doi.org/10.11963/1002-7807.ltyscd.20200612
杂种优势一般是指杂种一代在生物量、株高、生长速率和育性等方面高于其双亲的现象[1]。杂种优势利用已在水稻、玉米等重要粮食作物上取得巨大成功,为解决人类温饱和提高生活质量做出了重要贡献[2,3]。棉花育种工作者也试图利用杂种优势来提高产量和改善品质,为此开展了大量研究并取得了一定进展。陆地棉杂交组合较多,在棉花生产上发挥了重要作用,但也只局限于陆地棉种内杂种优势的研究[4,5],陆海种间杂种优势的利用仍然匮乏。
陆地棉占棉花总种植面积的90%以上,是最重要的栽培种[6]。海岛棉由于纤维长、品质优,在生产上也有一定面积的种植。陆地棉和海岛棉均为异源四倍体棉种,二者杂交后代是研究多倍体杂种优势的优良材料。棉花陆海杂交种(Gossypium hirsutum L. × G. barbadense L.)具有很大的产量和品质提升潜力,但由于亲缘关系较远,存在遗传不亲和、营养生长旺盛、棉铃小、衣分低等问题[7],目前仍没有棉花陆海杂交种在生产中得以应用。为了解陆海杂交种生产上存在的问题和相关优势机理,国内外进行了一些研究,如张天真等[8]发现海陆杂交种在株高、开花期、果节数等农艺性状以及纤维强度等品质性状方面都有明显的杂种优势。Yu等[9]用种间BC1群体构建遗传连锁图谱时,发现Chr2、Chr16和Chr18这3条染色体上99.9%的标记偏分离,且都为杂合型。任立华等[10]对7个陆海置换系的产量、纤维品质等性状研究发现第一果枝节位、铃重和衣分等性状都与Chr16连锁。贾赵东等[11]对7个陆海置换系和渐渗系的农艺性状分析发现产量性状主要受加性效应和显性效应共同控制,纤维长度和马克隆值存在显著的加性×加性上位性效应。Tian等[12]通过海陆渐渗系研究,发现陆海杂交种存在大量能使杂种增产的超显性优势位点。上述研究只在陆海回交群体和置换系中进行了产量和品质数量性状位点(Quantitative trait loci, QTL)定位的相关研究,而陆海杂交种杂种优势及相关的遗传基础研究较少[13,14]
近年利用水稻籼粳亚种间杂交成功选育出产量显著高于籼稻的亚种间杂交稻,为利用亲缘关系较远的亚种间甚至种间杂种优势,选育高产优质杂交种提供了成功的案例[15]。合理利用遗传距离较大的陆海亲本,克服种间杂交困难,创制出优势显著的陆海杂交种,无论是对探索种间棉花杂交种选育的途径和方法,还是对于杂种优势产生机理的研究都具有非常重要的理论和现实意义。本研究使用12 份陆地棉材料和5 份海岛棉材料为亲本配制杂交组合,对陆海种间杂种优势进行鉴定与分析,明确陆海杂交种产量和品质的杂种优势,为深入研究种间杂种优势的遗传规律奠定基础。

1 材料与方法

1.1 试验材料与田间试验

本研究选取12份陆地棉材料(A01~12,母本,G.h)和5份海岛棉材料(B01~05,父本,G.b)(表1),所有材料均来自于中国农业科学院棉花研究所中期种质资源库,浙江省农作物品质改良技术研究重点实验室自交多代。2017年4月中旬种植于浙江农林大学小西门实验农场(浙江临安,30°23′ N,119°73′ E),盛花期人工去雄授粉配制杂交组合。2017年10月―2018年4月将53 份F1材料及其亲本种植于海南三亚南山试验农场(18°09′N,108°56′E)。采用随机区组设计,设3个小区重复,双粒直播。双行区,宽窄行,行长5 m,行距0.5 m,株距0.3 m,每行16株。2018年5―11月,根据优质棉纤维分级[16],选择三亚种植的、纤维品质达到4A级以上的11 个组合重复播种于浙江临安,试验设计与上述相同。按当地大田生产栽培技术进行管理。
表1 杂交组合所用亲本材料名称

Table 1 The materials used in hybridization combinations

亲本编号 材料 亲本编号 材料
Parent numbers Materials Parent numbers Materials
A01 TM-1 A10 豫棉19
A02 邯0904 Yumian 19
Han0904 A11 川农72318
A03 华中97-5017 Chuannong72318
Huazhong97-5017 A12 SF06
A04 晋棉35号 B01 海7124
Jinmian 35 Hai7124
A05 辽棉14号 B02 新海10号
Liaomian 14 Xinhai 10
A06 鲁原343 B03 阿长599
Luyuan343 Achang599
A07 巴州5628 B04 苏联棉B69
Bazhou5628 Sulian B69
A08 肖县133 B05 塔10-280
Xiaoxian133 Ta10-280
A09 新陆早7号
Xinluzao 7

1.2 性状测定

1.2.1 产量相关性状测定。待大田棉花正常收获时,每小区取中间5株,去除僵桃、坏桃,测定有效铃数(Boll number per plant,BN)。采收测定棉株的中部铃50个,晒干后统计籽棉质量(Seed cotton weight,SCW)和皮棉质量(Lint weight,LW),并计算衣分(Lint percentage,LP)。轧花后的种子选取百粒称量,4次重复,计算籽指(Seed index,SI)。1.2.2 成熟纤维品质性状测定。每个材料从皮棉中随机称取纤维样品20 g,送农业农村部棉花品质监督检验测试中心(河南,安阳)进行纤维长度(Fiber length,FL)、断裂比强度(Breaking tenacity,BT)、长度整齐度指数(Uniformity index,UI)、断裂伸长率(Breaking elongation,BE)和马克隆值(Micronaire,MIC)的测定。

1.3 数据统计分析

用MS Excel和SPSS 22.0软件进行数据分析,差异显著性分析使用独立样本T检验,其中中亲优势(Mid-parent heterosis,MPH)及超亲优势(Over-parent heterosis,OPH)计算方法参照许如根等[17]。F1为杂交后代表现,MP(Mid-parent)为2个亲本表型测定均值,HP(High parent)为高值亲本表型均值,中亲优势(MPH)=(F1-MP)/MP×100%,超亲优势(OPH)=(F1-HP)/HP×100%。

2 结果与分析

2.1 陆海杂交种的纤维品质性状分析

配制的杂交组合中,有7个组合没有收到足够多的杂交种,所以只有53个组合进行试验。对三亚种植的53个陆海杂交种进行纤维品质分析,结果(表2)表明,所有杂交组合的纤维长度均表现出显著或极显著的中亲优势;除了杂交组合T003、T009、T039外,断裂比强度也具有显著或极显著的中亲优势;60%以上杂交组合的马克隆值具有显著的负向中亲优势;50%以上杂交种的长度整齐度指数具有显著或极显著的正向中亲优势,40%杂交组合的断裂伸长率具有显著或极显著的正向中亲优势。
表2 陆海杂交棉纤维品质性状分析(三亚)

Table 2 Analysis of fiber quality related traits in G. hirsutum×G. barbadense hybrid (Sanya)

组合编号
Combina-
tions
numbers
组合
Combina-
tions
纤维长度FL 断裂比强度BT 长度整齐度指数UI 马克隆值MIC 断裂伸长率BE
数值Value/
mm
中亲
优势值
MPH/%
数值Value/(cN·tex-1) 中亲
优势值
MPH/%
数值Value/
%
中亲
优势值
MPH/%
数值Value 中亲
优势值
MPH/%
数值Value/
%
中亲
优势值
MPH/%
T001 A01/B01 34.9** 15.56 37.6** 19.37 85.5** 4.01 3.0* -0.10 5.3* -13.82
T002 A02/B01 36.0** 8.43 35.9* 1.89 85.0 0.53 3.3** -0.18 5.3* -7.83
T003 A03/B01 34.8** 7.74 36.8 0.59 84.7 -0.59 3.4** -0.14 5.4 -6.09
T004 A04/B01 35.0** 13.45 37.5** 15.74 85.0 0.18 3.3* -0.13 5.2* -11.11
T005 A06/B01 35.2** 5.07 35.7* 1.52 84.0 -0.59 3.2 -0.09 6.6* 10.92
T006 A07/B01 34.4** 7.50 37.7** 7.67 83.7* -1.53 3.5* -0.04 6.7* 13.56
T007 A08/B01 33.5* 1.82 34.8** -2.75 83.0 -0.54 3.2** -0.15 6.7* 17.54
T008 A09/B01 32.8** 12.91 39.9** 21.89 85.0** 3.41 3.0** -0.23 5.5** -7.56
T009 A10/B01 32.2** 5.06 33.6 0.00 81.8 -0.12 3.3** -0.21 5.7 -4.20
T010 A11/B01 32.4** 5.88 36.6** 13.72 84.6* 2.98 3.1* -0.06 6.4 6.67
T011 A12/B01 33.2** 6.24 40.7** 16.50 85.3 1.19 3.2** -0.24 5.7 -5.00
T012 A01/B02 34.0** 11.48 33.9** 10.66 84.3** 1.69 3.1 -0.02 5.1** -17.07
T013 A02/B02 37.3** 11.34 37.7** 9.69 85.8* 0.65 3.2* -0.16 5.0* -13.04
T014 A03/B02 33.8* 3.68 36.1* 1.06 84.1** -2.10 3.4* -0.09 6.5* 13.04
T015 A04/B02 35.4** 13.64 38.0** 20.50 83.6* -2.28 3.4* -0.06 5.5 -5.98
T016 A05/B02 36.4** 13.57 38.7** 20.43 87.2* 2.89 3.2** -0.20 6.2 1.64
T017 A06/B02 35.7** 5.62 38.4** 11.95 86.7 1.76 3.3 0.00 8.0** 34.45
T018 A07/B02 35.8** 10.84 31.5** -7.76 84.6* -1.28 3.2* -0.07 6.7* 13.56
T019 A08/B02 35.9** 8.13 30.8** -11.80 84.7** 0.65 3.2** -0.10 5.9 3.51
T020 A09/B02 33.2** 13.12 35.6** 11.70 85.2** 2.77 3.0* -0.19 5.8 -2.52
T021 A10/B02 36.1** 16.64 35.7** 9.06 82.8 0.24 3.4* -0.15 6.7* 12.61
T022 A11/B02 33.9** 9.71 35.8** 14.30 83.9* 1.27 3.2 0.03 5.7 -5.00
T023 A12/B02 36.7** 16.32 34.8* 2.14 86.4** 1.65 3.4** -0.15 6.8* 13.33
T024 A02/B03 37.1** 11.75 32.6* -2.98 83.8* -0.89 3.7 -0.01 6.2 -1.59
T025 A03/B03 33.3* 3.10 39.6** 13.30 84.6 -0.70 3.6 -0.03 5.0** -20.63
T026 A05/B03 36.0** 13.39 41.5** 32.31 87.3** 3.87 2.9** -0.27 5.1 -23.31
T027 A08/B03 39.3** 19.45 47.4** 40.51 86.9** 4.13 3.6 0.03 6.8* 8.80
T028 A09/B03 32.9** 13.25 36.1** 16.08 85.8** 4.38 3.2* -0.12 6.7 3.08
T029 A10/B03 36.0** 17.46 40.3** 26.08 85.7** 4.64 2.9 -0.27 6.8 4.62
T030 A11/B03 35.7** 16.67 40.4** 32.24 86.4** 5.17 3.2 0.05 6.5 -0.76
T031 A12/B03 34.9** 11.68 35.7** 7.21 84.4 0.12 3.7* -0.06 6.6 0.76
T032 A01/B04 35.6** 16.72 37.7** 24.22 85.9** 5.40 3.4** 0.13 5.4** -12.20
T033 A02/B04 36.8** 9.85 39.9** 17.06 85.9* 2.44 3.5 -0.04 6.9* 20.00
T034 A03/B04 36.8** 12.88 36.9* 4.13 85.3 0.95 3.5 -0.03 6.7* 16.52
T035 A04/B04 37.6** 20.71 40.6** 29.92 84.2 0.06 3.7 0.70 6.8* 16.24
T036 A05/B04 37.8** 17.94 37.6** 18.05 87.8** 5.34 3.2** -0.17 5.7 -6.56
T037 A06/B04 37.7** 11.54 36.8** 8.19 86.8* 3.58 3.2 0.02 6.3 5.88
T038 A07/B04 36.5** 13.00 35.6** 5.12 82.7** -1.90 3.4 0.03 7.0** 18.64
T039 A08/B04 35.7** 7.53 34.5 -0.39 83.9* 1.39 3.0** -0.12 6.5* 14.04
T040 A09/B04 33.9** 15.50 34.8* 10.18 87.1** 6.87 3.4 -0.04 7.3** 22.69
T041 A10/B04 34.9** 12.76 35.0** 7.86 82.4* 1.48 3.3* -0.14 6.7* 12.61
T042 A11/B04 35.0** 13.27 35.1** 13.10 83.0* 1.90 3.6** 0.22 6.7* 11.67
T043 A12/B04 36.8** 16.64 39.3** 16.32 84.3 0.84 3.3** -0.14 7.3* 21.67
T044 A02/B05 37.5** 13.46 39.8** 13.00 87.0** 2.53 3.7 -0.03 6.7* 14.53
T045 A03/B05 35.4** 10.11 39.3** 7.47 85.0* -0.58 3.6 -0.04 5.3 -9.40
T046 A04/B05 37.9** 23.45 46.3** 42.97 85.0 -0.18 3.3* -0.08 6.6* 10.92
T047 A05/B05 35.7** 12.97 40.3** 22.18 85.0* 0.77 3.6* -0.10 7.0** 12.90
T048 A06/B05 38.1** 14.24 46.5** 33.67 87.8 3.54 3.1 -0.06 5.9 -2.48
T049 A07/B05 35.0** 9.89 37.6** 7.43 84.1* -1.41 3.5 0.01 6.6 10.00
T050 A09/B05 33.1** 13.84 33.9** 3.61 82.6 0.12 3.1** -0.16 6.8* 12.40
T051 A10/B05 36.6** 20.00 41.5** 23.57 85.0* 3.41 3.4** -0.15 6.7 10.74
T052 A11/B05 33.6** 10.34 36.9** 14.70 83.8** 1.64 3.6** 0.16 6.6 8.20
T053 A12/B05 34.1** 9.65 39.6** 13.40 84.3 -0.35 3.4** -0.15 6.5 6.56
注:*和**分别表示杂交F1与中亲值差异显著(P<0.05)、极显著(P<0.01)。
Note: * and ** mean the significant difference from MPH at the 0.05 and 0.01 probability levels, respectively.
参照棉花纤维品质评价方法[17],可将53个陆海杂交种进行纤维品质分级,其中杂交组合T006、T025、T027、T033、T034、T045、T047、T049、T052为4A级优质长绒棉;T035和T044为5A级优质长绒棉,这为下一步研究陆海种间杂种优势提供了优异的杂交后代材料。
为进一步明确杂种优势的稳定性,将上述11个组合在浙江临安再次进行种植。结果显示,11 个杂交种的纤维长度和断裂比强度都较三亚略下降(表3),但仍保持在4A级以上,且均呈现出显著或极显著的中亲优势。
表3 陆海杂交棉纤维品质性状分析(临安)

Table 3 Analysis of fiber quality traits in G. hirsutum×G. barbadense hybrid (Lin’an)

组合编号
Combina-
tions
numbers
组合
Combina-
tions
纤维长度FL 断裂比强度BT 长度整齐度指数UI 马克隆值MIC 断裂伸长率BE
数值Value/
mm
中亲
优势值
MPH/%
数值Value/(cN·tex-1) 中亲
优势值
MPH/%
数值Value/
%
中亲
优势值
MPH/%
数值Value 中亲
优势值
MPH/%
数值Value/
%
中亲
优势值
MPH/%
T006 A07/B01 33.7** 11.59 36.1** 13.88 83.5 -0.60 3.6* 7.93 6.8* 13.56
T025 A03/B03 33.9** 13.45 35.9** 20.57 83.3 0.85 3.6 2.03 6.8* 8.80
T027 A08/B03 35.5** 23.05 38.7** 27.28 85.0 1.49 3.6 -0.04 6.9** 22.69
T033 A02/B04 35.8** 14.38 39.3** 18.86 84.7 0.89 4.3 -0.04 6.8* 20.00
T034 A03/B04 33.5** 18.17 38.0** 23.32 85.8 2.51 3.7* -0.19 6.9 -2.52
T035 A04/B04 37.0** 16.32 37.7** 15.86 85.0 0.41 3.8 -0.01 6.9 -1.59
T044 A02/B05 37.1** 20.85 41.9** 28.48 86.6* 3.22 4.0 0.07 7.0* 16.24
T045 A03/B05 34.0* 12.55 36.9** 14.01 84.4 0.96 3.7** 0.22 6.9* 11.67
T047 A05/B05 35.2* 12.10 40.1** 21.48 85.7 1.90 3.9* -0.10 7.0** 12.90
T049 A07/B05 34.8* 10.30 37.1** 11.53 84.7 1.81 3.6** -0.12 6.8* 14.04
T052 A11/B05 35.4** 12.38 39.9** 14.61 84.5 -0.29 3.9 0.02 6.9 5.88
注:*和**分别表示与中亲值差异显著(P<0.05)、极显著(P<0.01)。
Note: * and ** mean the significant difference from MPH at the 0.05 and 0.01 probability levels, respectively.
结合两地纤维品质数据发现,11个杂交组合中有5个组合的父本均为海岛棉品种塔10-280。进一步分析,发现以塔10-280作为亲本配制的杂交种纤维长度与断裂比强度分别高于33 mm和33 cN·tex-1,说明塔10-280可以作为骨干亲本应用于纤维品质改良育种。
表4 陆海杂交棉产量性状杂种优势(三亚)

Table 4 Analysis of field traits in G. hirsutum×G. barbadense hybrid (Sanya)

组合编号
Combina-
tions numbers
组合
Combina-
tions
有效铃数BN 籽棉质量SCW 皮棉质量LW 衣分LP 籽指SI
数值Value 中亲
优势值
MPH/%
数值Value/g 中亲
优势值
MPH/%
数值Value/g 中亲
优势值
MPH/%
数值Value/
%
中亲
优势值
MPH/%
数值Value/
g
中亲
优势值
MPH/%
T001 A01/B01 13.3* 28.69 200.40** -11.82 54.35** -31.96 27.12** -21.74 12.15 14.14
T002 A02/B01 16.0* 21.49 208.25** 19.60 71.55** 13.48 34.36 -3.86 15.13* 24.17
T003 A03/B01 14.3 11.41 179.55* -1.87 70.40** 14.05 39.21** 15.87 13.48 11.45
T004 A04/B01 19.0 9.60 133.35** -20.46 63.25 1.73 47.43** 29.77 13.36 20.20
T005 A06/B01 12.3 11.82 175.70** 11.96 71.50** 16.54 40.69 5.63 13.86 14.36
T006 A07/B01 12.7 5.83 146.90** 15.46 71.05** 56.76 48.37** 34.89 14.15* 25.00
T007 A08/B01 12.0* -21.75 158.55** 15.79 81.10** 65.26 51.15** 42.54 12.76 9.39
T008 A09/B01 22.3** 63.13 168.76** 14.34 75.05** 46.65 44.47** 28.51 12.32 13.29
T009 A10/B01 14.3* 26.16 186.25** -5.60 55.45** -34.22 29.77** -26.69 13.19 16.98
T010 A11/B01 16.0 9.07 155.75 -0.78 70.15** 18.60 45.04** 20.91 12.67* 28.04
T011 A12/B01 14.3 -7.74 169.30** 10.10 64.10* -3.68 37.86** -10.77 11.77 3.16
T012 A01/B02 7.3** -40.82 213.05** -12.22 78.60** -5.36 36.89* 10.14 14.13* 24.00
T013 A02/B02 15.3 0.86 196.25** 3.53 67.05 1.25 34.17 -1.19 15.20** 17.51
T014 A03/B02 15.3 3.13 216.25** 9.00 76.55** 17.95 35.40* 8.32 14.75* 14.83
T015 A04/B02 16.0* -17.25 121.05** -33.88 60.90** -6.81 50.31** 42.16 13.58 14.45
T016 A05/B02 9.7** -41.21 222.90** 36.87 68.75** 17.22 30.84** -14.92 13.98 8.92
T017 A06/B02 17.0** 30.77 184.65** 7.14 70.23** 8.84 38.03 1.79 14.44 12.20
T018 A07/B02 12.0 -14.29 128.90** -9.64 82.30** 69.69 63.85** 84.01 13.80 14.33
T019 A08/B02 24.5** 41.33 184.70** 21.23 81.70** 56.36 44.23** 27.37 12.18 -1.89
T020 A09/B02 13.3* -15.12 170.40** 4.52 79.25** 45.81 46.51** 39.06 11.11 -4.43
T021 A09/B02 16.3* 22.23 143.90** -32.35 64.55** -26.21 44.86** 13.71 12.89 7.19
T022 A11/B02 21.0** 25.97 164.35** -4.67 70.40** 12.96 42.84** 18.70 12.14 14.04
T023 A12/B02 12.7** -27.43 212.65** 25.68 70.95 1.76 33.36** -19.17 12.96 6.58
T024 A02/B03 17.0** 39.69 214.55** 32.01 66.20** 17.01 30.86* -7.89 15.46* 25.84
T025 A03/B03 14.3* 20.83 206.45** 20.47 70.15** 26.97 33.98* 7.51 15.75* 29.15
T026 A05/B03 15.3 13.33 221.15** 62.82 59.23** 20.88 26.78** -23.87 14.84* 21.79
T027 A08/B03 11.3* -21.17 178.30** 42.27 62.90** 47.65 35.28 4.84 13.16 11.86
T028 A09/B03 12.7 0.24 170.95** 25.70 63.05** 41.05 36.88** 13.93 14.14* 28.84
T029 A10/B03 11.3 9.34 173.85** -6.38 71.60** -8.00 41.18* 7.31 12.85 12.97
T030 A11/B03 13.3 -2.71 176.80** 21.62 60.55** 14.95 34.25 -2.18 14.15** 41.57
T031 A12/B03 16.0 10.34 173.25** 21.86 74.05** 23.26 42.74* 6.33 13.24 15.03
T032 A01/B04 15.0* 26.74 206.25** -7.09 57.95** -25.13 28.10** -17.61 14.68* 29.51
T033 A02/B04 11.7* -20.25 193.15** 14.39 64.65* 8.43 32.44* -7.81 13.01 1.05
T034 A03/B04 12.7 -11.41 176.05 -0.93 66.15** 11.65 37.57** 12.86 14.35 12.24
T035 A04/B04 19.3 2.47 158.90* -2.14 70.50** 18.09 44.37** 23.25 13.85 17.32
T036 A05/B04 21.3** 33.13 160.55** 12.94 74.35** 40.28 46.31** 25.64 13.05 2.15
T037 A06/B04 18.7** 49.60 209.80** 38.34 59.60 1.23 28.41** -25.18 12.68 -1.01
T038 A07/B04 14.7 8.89 134.30** 10.13 56.25** 31.27 41.88** 18.61 13.58 13.07
T039 A08/B04 9.3** -44.76 147.95** 12.38 56.15** 20.49 37.95* 7.40 13.13 6.27
T040 A09/B04 11.3** -25.51 179.15** 25.87 69.80** 43.33 38.96** 14.40 13.73 18.72
T041 A10/B04 11.7 -8.84 216.55** 12.77 67.40** -17.63 31.12** -22.32 13.77 15.09
T042 A11/B04 14.7 -9.09 212.10** 39.82 70.80** 24.92 33.38* -9.05 14.16* 33.77
T043 A12/B04 13.3* -21.76 197.30** 32.86 87.80** 37.03 44.50* 6.26 13.69 13.14
T044 A02/B05 13.0 6.82 177.95** 4.95 83.70** 34.91 47.04** 30.16 13.50 6.85
T045 A03/B05 9.7 -18.04 184.60** 3.48 70.85** 16.69 38.38** 12.09 14.38 14.63
T046 A04/B05 15.3 -6.34 181.55** 11.33 70.15** 14.69 38.64 4.57 14.78* 27.80
T047 A05/B05 19.0** 40.74 218.05** 52.64 76.90** 41.19 35.27* -6.72 14.88* 18.71
T048 A06/B05 16.7** 67.00 209.20** 37.32 60.30 -0.07 28.82** -25.95 14.18 12.81
T049 A07/B05 9.3 -15.45 190.95** 55.69 87.35** 97.11 45.74** 26.14 13.48 14.53
T050 A09/B05 9.0 -28.97 162.55** 13.65 77.10** 53.69 47.43** 35.49 10.92 -3.58
T051 A10/B05 15.0** 45.14 186.40** -3.28 56.95** -31.62 30.55** -25.51 13.24 12.92
T052 A11/B05 19.7** 44.11 192.50** 26.31 75.10** 29.17 39.01 3.61 12.18 17.74
T053 A12/B05 19.7** 35.86 182.40** 22.25 82.55** 25.95 45.26* 5.67 13.58 14.50
注:*和**分别表示与中亲值差异显著(P<0.05)、极显著(P<0.01)。
Note: * and ** mean the significant difference from MPH at the 0.05 and 0.01 probability levels, respectively.

2.2 陆海杂交棉产量性状分析

对三亚种植的53个杂交种及其亲本进行产量相关性状测定,结果(表4)表明,60%杂交组合的有效铃数都具有中亲优势,30%具有显著或极显著中亲优势;70%以上组合的籽棉质量和皮棉质量具有中亲优势,其中所有杂交种的籽棉质量均具有显著或极显著的中亲优势,皮棉质量也几乎全部达到显著或极显著水平;56%组合的衣分具有显著或极显著中亲优势。
对浙江临安的11 个杂交种进行产量性状测定,结果(表5)表明,组合间有效铃数差异较大,8个组合具有正向的显著或极显著中亲优势;80%以上组合的籽棉重和皮棉重为负向中亲优势;约50%杂交种的衣分具有正向中亲优势,但只有3个组合具有显著或极显著的中亲优势;仅T035的籽指表现显著的中亲优势,另外有7个组合具有正向杂种优势,但并不显著。
表5 陆海杂交棉产量性状杂种优势(临安)

Table 5 Analysis of field traits in G. hirsutum × G. barbadense hybrid (Lin’an)

组合编号
Combina-
tions numbers
组合
Combina-
tions
有效铃数BN 籽棉质量SCW 皮棉质量LW 衣分LP 籽指SI
数值Value 中亲
优势值
MPH/%
数值Value/g 中亲
优势值
MPH/%
数值Value/g 中亲
优势值
MPH/%
数值Value/
%
中亲
优势值
MPH/%
数值Value/g 中亲
优势值
MPH/%
T006 A07/B01 14** 47.37 114.59** -25.97 36.81** -25.02 32.12* 7.64 10.48 -2.96
T025 A03/B03 10* 33.33 115.29** -27.14 39.29** -12.42 34.08** 32.71 10.55 -4.87
T027 A08/B03 6* -29.41 133.27 12.54 33.67 3.66 25.26 -8.18 12.79 20.09
T033 A02/B04 15** 50.00 160.09 1.08 55.82 -1.53 34.87 4.32 9.62 -9.25
T034 A03/B04 13** 85.71 141.05** 16.10 38.24** 20.10 27.11 4.37 11.41 5.80
T035 A04/B04 13** 18.18 142.87** -8.13 44.95** -25.97 31.46** -12.05 13.97* 28.05
T044 A02/B05 16** 68.42 148.62 -0.58 50.87** -11.09 34.23 -3.17 11.51 11.96
T045 A03/B05 6** -50.00 120.19** -21.47 36.7** -32.52 30.53* -8.39 11.86 13.82
T047 A05/B05 13** 52.94 154.98** 10.80 50.07* -5.71 32.31** -11.43 11.87 12.62
T049 A07/B05 4** -57.90 120.12** -21.17 32.14** -33.42 26.76** -12.51 11.85 4.82
T052 A11/B05 15** 87.50 116.32** -19.00 40.61 -1.37 34.91** 22.68 12.06 8.16
注:上标*和**分别表示与中亲值差异显著(P<0.05)、极显著(P<0.01)。
Note: Superscript * and ** mean the significant difference from MPH at the 0.05 and 0.01 probability levels, respectively.
比较11 个杂交种两地产量性状数据发现,除有效铃数外,其余4个产量相关性状在临安的中亲优势均显著低于三亚;三亚种植时籽棉质量、皮棉质量和衣分都具有显著或极显著的正向中亲优势,但在临安种植时,只有衣分具有正向中亲优势,籽棉质量和皮棉质量具有负向中亲优势,这可能是临安地区的降雨量多于三亚地区,但日照比三亚少造成的。

2.3 纤维品质及产量相关性状表型变异

纤维品质相关性状方差分析(表6)表明,三亚种植时陆海杂交棉纤维品质相关性状的变异系数(Coefficient of variation,CV)为1.69%~11.07%,其中变异系数最小的性状为长度整齐度指数,变幅81.8%~87.8%,平均为84.9%,然后为纤维长度,变幅32.2 ~39.3 mm,平均为35.4 mm,变异系数最大的为断裂伸长率,变幅5.0%~8.0%,平均6.3%。临安种植时,各纤维品质性状的CV为1.09%~10.17%,除马克隆值外,其余纤维品质性状的CV都低于5%,变异幅度较小;马克隆值的CV为10.17%,变异幅度较大;纤维长度变异系数3.22%,纤维长度范围为33.5~37.1 mm,平均为35.0 mm。
表6 2个试验点纤维品质及产量性状的表型变异分析

Table 6 Phenotypic variation of the fiber quality and field traits at the two trial sites

试验点
Trial sites
性状类型
Trait types
性状
Traits
最大值
Maximum
最小值
Minimum
平均值
Average
方差
Variance
标准差
Standard
deviation
变异系数
Coefficient of
variation/%
偏度
Skewness
峰度
Kurtosis
三亚Sanya 纤维品质性状
Fiber quality traits
纤维长度 FL/mm 39.3 32.2 35.39 2.73 1.65 4.67 0.01 -0.59
断裂比强度 BT/(cN·tex-1 47.4 30.8 37.60 11.24 3.35 8.91 0.84 1.50
长度整齐度指数 UI/% 87.8 81.8 84.92 2.06 1.43 1.69 0.12 -0.44
马克隆值 MIC 3.7 2.9 3.32 0.05 0.21 6.43 0.04 -0.69
断裂伸长率 BE/% 8.0 5.0 6.27 0.48 0.69 11.07 -0.24 -0.58
产量
性状
Yield traits
铃数 BN 24.5 7.3 14.68 3.62 13.13 24.68 0.48 0.15
籽棉质量 SCW/g 222.9 121.05 181.80 25.61 655.78 14.09 -0.37 -0.43
皮棉质量 LW/g 87.8 54.35 69.57 8.45 71.46 12.15 0.16 -0.55
衣分 LP/% 63.85 26.78 39.05 7.40 54.71 18.94 0.59 0.90
籽指 SI/g 15.75 10.92 13.55 1.04 1.08 7.66 -0.29 0.11
临安Lin’an 纤维品质性状
Fiber quality traits
纤维长度 FL/mm 37.1 33.5 34.99 1.13 1.27 3.22 0.29 -0.59
断裂比强度 BT/(cN·tex-1 41.95 35.9 38.34 1.86 3.46 4.85 0.50 -0.28
长度整齐度指数 UI/% 86.6 83.3 84.84 0.97 0.93 1.14 0.12 0.03
马克隆值 MIC 4.8 3.5 3.86 0.39 0.16 10.17 1.54 2.37
断裂伸长率 BE/% 7.0 6.8 6.88 0.08 0.01 1.09 0.33 -0.88
产量
性状
Yield traits
铃数 BN 16.0 4.0 11.36 4.20 17.66 36.98 -0.80 -0.94
籽棉质量 SCW/g 160.09 114.59 133.40 16.98 288.23 12.73 0.29 -1.59
皮棉质量 LW/g 55.82 32.14 41.74 7.67 58.78 18.37 0.66 -0.70
衣分 LP/% 34.91 25.26 31.24 3.45 11.90 11.04 -0.67 -0.96
籽指 SI/g 13.97 9.62 11.63 1.17 1.38 10.08 0.26 0.80
陆海杂交棉在三亚种植时产量相关性状的CV为7.66%~24.68%,其中变异系数最小的性状为籽指,不同组合间衣分变异系数较大,为18.94%,产量性状中变异系数最大的为铃数;在临安种植时,产量相关性状的变异系数为10.08%~36.98%,与三亚一样,籽指变异系数最小,铃数变异系数最大(表6)。
陆海杂交种与陆地棉、海岛棉亲本之间纤维品质相关性状的差异显著性分析(图1)表明,纤维长度和马克隆值具有显著的超亲优势;纤维断裂比强度和长度整齐度指数不具有显著的超亲优势,但具有极显著的中亲优势;断裂伸长率具有显著的中亲优势。从整体上看,F1代纤维品质性状都表现出显著的中亲或超亲优势。
图1 F1与亲本纤维品质、产量相关性状的差异显著性分析
*:差异显著(P<0.05);**:差异极显著(P<0.01)。

Fig. 1 Significant difference analysis of fiber quality and yield traits between F1 hybrids and parents

* and ** mean the significant difference at the 0.05 and 0.01 probability levels, respectively.

Full size|PPT slide

而在产量相关性状中,虽然铃数、籽棉质量和籽指具有极显著的中亲优势,衣分具有显著的中亲优势,但籽棉质量和皮棉质量较陆地棉母本都具有负向的极显著杂种优势,铃数、衣分与陆地棉母本无显著差异。

2.4 陆海杂交棉纤维品质性状的相关性分析

利用SPSS22.0软件分析杂交种纤维品质各性状之间的相关性,结果表明长度整齐度指数与纤维长度、长度整齐度指数与断裂比强度都存在极显著的正相关(表7),纤维长度与断裂比强度间也存在极显著正相关,这为后续筛选优势杂交组合提供了理论基础。
表7 陆海杂交棉纤维品质性状相关性分析

Table 7 Correlation analysis of fiber quality traits of G. hirsutum × G. barbadense hybrid cotton

性状 Traits 纤维长度 FL 断裂比强度BT 长度整齐度指数 UI 马克隆值 MIC 断裂伸长率 BE
纤维长度 FL 1.000
断裂比强度 BT 0.460** 1.000
长度整齐度指数UI 0.469** 0.496** 1.000
马克隆值 MIC 0.230 0.066 -0.167 1.000
断裂伸长率 BE 0.170 0.011 -0.072 0.270 1.000
注:**表示相关性极显著。
Note: Superscript ** means significant correlation at the 0.01 probability level, respectively.
对陆海杂交种产量性状相关性分析(表8)发现,籽棉质量与籽指呈显著正相关,与衣分呈极显著负相关关系;籽指与衣分呈显著负相关关系。
表8 陆海杂交棉产量指标相关性分析

Table 8 Correlation analysis of yield traits of G. hirsutum × G. barbadense hybrid cotton

性状 Traits 籽指SI 有效铃数BN 籽棉质量SCW 皮棉质量LW 衣分LP
籽指 SI 1.000
铃数 BN -0.075 1.000
籽棉质量 SCW 0.383* -0.067 1.000
皮棉质量 LW -0.100 0.026 0.024 1.000
衣分 LP -0.331* 0.067 -0.769** 0.601** 1.000
注:*和**表示相关程度达到0.05和0.01水平。
Note: * and ** mean significant correlation at the 0.05 and 0.01 probability levels, respectively.

3 讨论

纤维品质影响纺纱质量,是纺织工业最为关注的因素之一。因此,纤维品质遗传改良一直是棉花育种者们致力研究的方向。近些年对陆地棉纤维品质相关性状的研究较多[18,19],但关于陆海杂交种纤维品质相关的报道非常少。本研究选取12 份陆地棉材料和5 份海岛棉材料配制F1进行纤维品质性状和产量性状测定,发现纤维长度和纤维强度普遍具有显著的中亲优势,部分杂交组合具有较强的超亲优势;这与前人的研究结果[20,21]一致。同时发现不同组合间纤维品质性状差异较小,尤其是纤维长度和长度整齐度指数变异系数较小,在不同环境条件下变异系数基本保持一致,可以稳定遗传,这为选育优质棉奠定了理论基础。
部分陆海杂交种在产量性状中具有中亲优势,这一结论也与前人研究结果[22,23]一致,但产量性状的表现显著低于陆地棉亲本。虽然纤维品质性状普遍存在中亲优势,但营养生长过于旺盛、铃室少、产量低等问题,限制了陆海种间杂种优势的应用。因而在挑选陆海杂交亲本时,要注意扩大亲本选择范围,选择纤维品质优、遗传距离较近、配合力高、丰产性好的陆海亲本,以进一步解决种间杂交出现的问题,便于在生产上应用。
水稻[2, 24]和拟南芥[25]杂种优势机理研究取得的进展,为全基因组水平上研究杂种优势提供了新的思路,但异源四倍体的棉花相较于二倍体的水稻和拟南芥,杂种优势产生的分子机理更加复杂。本研究获得2 个5A级优质长绒棉组合T035、T044,在三亚和临安种植时的纤维品质杂种优势均表现稳定,为利用杂种优势、研究多倍体杂种优势产生的分子机理提供了良好的种质材料。

4 结论

通过对53个杂交组合及其亲本表型的鉴定与分析发现,陆海杂交棉纤维品质相关性状普遍存在显著的中亲优势,尤其是纤维长度和断裂比强度,获得骨干亲本塔10-280,获得4A级长绒棉杂交组合9个(T006、T025、T027、T033、T034、T045、T047、T049、T052),5A级优质长绒棉组合2个(T035、T044);而各组合间产量性状差异较大,籽棉质量和皮棉质量远低于陆地棉亲本,无法直接应用于生产实践。

参考文献

[1]
Chen Z J. Molecular mechanisms of polyploidy and hybrid vigor[J]. Trends in Plant Science, 2010, 15(2):57-71. https://doi.org/10.1016/j.tplants.2009.12.003
[2]
Huang X H, Yang S H, Gong J Y, et al. Genomic architecture of heterosis for yield traits in rice[J]. Nature, 2016, 537(7622):629-633. https://doi.org/10.1038/nature19760
[3]
Frank H, Jutta A. B. Heterosis in plants[J]. Current Biology, 2018, 28(18):1089-1092. https://doi.org/10.1016/j.cub.2018
041
[4]
Shang L G, Liang Q Z, Wang Y M, et al. Epistasis together with partial dominance, over-dominance and QTL by environment interactions contribute to yield heterosis in upland cotton[J]. Theoretical & Applied Genetics, 2016, 129(7):1429-1446. https://doi.org/10.1007/s00122-016-2714-2
[5]
Li C, Yu H R, Li C, et al. QTL mapping and heterosis analysis for fiber quality traits across multiple genetic populations and environments in upland cotton[J]. Frontiers in Plant Science, 20189:1364. https://doi.org/10.3389/fpls.2018.01364
[6]
Sun F D, Zhang J H, Wang S F, et al. QTL mapping for fiber quality traits across multiple generations and environments in upland cotton[J]. Molecular Breeding, 2012, 30(1):569-582.
[7]
Basbag S, Gencer O. Investigation of some yield and fibre quality characteristics of interspecific hybrid (Gossypium hirsutum L. × G. barbadense L.) cotton varieties[J]. Hereditas, 2007, 144(1):33-42. https://doi.org/10.1111/j.2007.0018-0661.01962.x
Interspecific hybrid cottons (Gossypium hirsutum L. x G. barbadense L.) have great both yield and quality potential. This study was conducted to determine potential yields and quality characteristics of hybrid cotton varieties in southeastern Anatolia region of Turkey. The experiment was set out a completely randomized block design with four replications during 2003 and 2004 at University of Dicle, Faculty of Agriculture Experimental Field. Seven interspecific hybrid cotton varieties (48-08, Sevilla, Europe, Ica, Etna, 14-08 and Acalpi) which were obtained from Israel, and commonly grown varieties in this region, non-hybrid cotton varieties, GW Teks and DP-Opal were used as the materials of the study. Difference among the cultivars was significant for all traits except sympodial branch. Maximum number of boll and lint yield was 20.18 n plant(-1) and 1685.8 kg ha(-1) from interspecific hybrid cotton Ica, while interspecific hybrid cotton Europe recorded the lowest number of boll and lint yield. Interspecific hybrid cotton varieties showed higher value for fibre length, fibre fineness and fibre strength than non-hybrid cotton varieties. The longest fibres were obtained from Acalpi and Etna (34.08 and 33.88 mm), while non-hybrid varieties, DP-Opal and GW-Teks, had the lowest fibre length, 28.50 and 30.03 mm, respectively. The finest fibres obtained from Ica and 48-08 (3.42 and 3.45 mic.), the strongest fibres from Etna and Acalpi (40.07 and 40.23 g tex(-1)), and most elongation fibres from Acalpi (8.00%) and Sevilla (7.45%). Lint yield correlated positive and significant with fiber length.
[8]
张天真, 靖深蓉. 棉花雄性不育杂交种选育的理论与实践[M]. 北京: 中国农业出版社, 1998: 25-30.
Zhang Tianzhen, Jing Shenrong. Theory and practice of cotton male sterile hybrid breeding[M]. Beijing: China Agriculture Press, 1998: 25-30.
[9]
Yu Y, Yuan D, Liang S, et al. Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between Gossypium hirsutum and G. barbadense[J]. BMC Genomics, 2011, 12(1):15. https://doi.org/10.1186/1471-2164-12-15
[10]
任立华, 张天真. 陆地棉七个置换系的遗传评价[J]. 作物学报, 2001, 27(6):993-999. https://doi.org/CNKI:SUN:XBZW.0.2001-06-049
Ren Lihua, Zhang Tianzhen. Genetic evaluation of seven substitution lines in upland cotton[J]. Acta Agronomica Sinica, 2001, 27(6):993-999.
[11]
贾赵东, 孙敬, 张天真. 利用7个置换系和渐渗系的双列杂交研究海陆杂种的数量性状遗传[J]. 南京农业大学学报, 2006, 29(2):6-10. http://dx.doi.org/10.7685/j.issn.1000-2030.2006.02.002
Jia Zhaodong, Sun Jing, Zhang Tianzhen. Diallel analysis of quantitative traits of hybrid between Gossypium barbadense L. and G. hirsutum L. using 7 substitution and introgression lines[J]. Journal of Nanjing Agricultural University, 2006, 29(2):6-10.
[12]
Tian S H, Xu X L, Zhu X F, et al. Overdominance is the major genetic basis of lint yield heterosis in interspecific hybrids between G. hirsutum and G. barbadense[J]. Heredity, 2019, 123(3):384-394. https://doi.org/10.1038/s41437-019-0211-5
[13]
Guo X, Guo Y, Ma J, et al. Mapping heterotic loci for yield and agronomic traits using chromosome segment introgression lines in cotton[J]. Journal of Integrative Plant Biology, 2013, 55(8):759-774. https://doi.org/10.1111/jipb.12054
[14]
Imran M, Shakeel A, Azhar F M, et al. Combining ability analysis for within-boll yield components in upland cotton (Gossypium hirsutum L.)[J]. Genetics and Molecular Research, 2012, 11(3):2790-2800. https://doi.org/10.4238/2012.August.24.4
Cotton is an important cash crop worldwide, accounting for a large percentage of world agricultural exports; however, yield per acre is still poor in many countries, including Pakistan. Diallel mating system was used to identify parents for improving within-boll yield and fiber quality parameters. Combining ability analysis was employed to obtain suitable parents for this purpose. The parental genotypes CP-15/2, NIAB Krishma, CIM-482, MS-39, and S-12 were crossed in complete diallel mating under green house conditions during 2009. The F₀ seed of 20 hybrids and five parents were planted in the field in randomized complete block design with three replications during 2010. There were highly significant differences among all F₁ hybrids and their parents. Specific combining ability (SCA) variance was greater than general combining ability (GCA) variance for bolls per plant (9.987), seeds per boll (0.635), seed density (5.672), lint per seed (4.174), boll size (3.69), seed cotton yield (0.315), and lint percentage (0.470), showing predominance of non-additive genes; while seed volume (3.84) was controlled by additive gene action based on maximum GCA variance. Cultivar MS-39 was found to be the best general combiner for seed volume (0.102), seeds per boll (0.448), and lint per seed (0.038) and its utilization produced valuable hybrids, including MS-39 x NIAB Krishma and MS-39 x S-12. The parental line CIM-482 had high GCA effects for boll size (0.33) and seeds per boll (0.90). It also showed good SCA with S-12 and NIAB Krishma for bolls per plant, with CP- 15/2 for boll size, and with MS-39 for seeds per boll. The hybrids, namely, CP-15/2 x NIAB Krishma, NIAB Krishma x S-12, NIAB Krishma x CIM-482, MS-39 x NIAB Krishma, MS-39 x CP-15/2, and S-12 x MS-39 showed promising results. Correlation analysis revealed that seed cotton yield showed significant positive correlation with bolls per plant, boll size and seeds per boll while it showed negative correlation with lint percentage and lint per seed. Seed volume showed significant negative correlation with seed density. Seeds per boll were positively correlated with boll size and negatively correlated with bolls per plant lint percentage and lint per seed. Similarly, lint per seed exhibited positive correlation with lint percentage and boll size showed significantly negative correlation with bolls per plant. Presence of non-additive genetic effects in traits like bolls per plant, seeds per boll, lint per seed, seed cotton yield, and lint percentage is indicative of later generation selection or heterosis breeding may be adopted. For boll size, seed volume and seed density early generation selection may be followed because of the presence of additive gene action. The parental material used in this study and cross combinations obtained from these parents may be exploited in future breeding endeavors.
[15]
姜元华, 许俊伟, 赵可, 等. 甬优系列籼粳杂交稻根系形态与生理特征[J]. 作物学报, 2015, 41(1):89-99. http://dx.chinadoi.cn/10.3724/SP.J.1006.2015.00089
Jiang Yuanhua, Xu Junwei, Zhao Ke, et al. Root system morphological and physiological characteristics of Indica-japonica hybrid rice of Yongyou series[J]. Acta Agronomica Sinica, 2015, 41(1):89-99.
[16]
中华人民共和国农业部. 棉花纤维品质评价方法: NY/T 1426-2007[S]. 北京: 中国农业出版社, 2007: 6.
Ministry of Agriculture of the People's Republic of China. Evaluation method of cotton fiber quality: NY/T 1426-2007 Beijing: China Agriculture Press, 2007: 6.
[17]
许如根, 吕超, 祝丽, 等. 大麦杂种优势利用研究Ⅰ. F1杂种的离中亲优势和超优亲优势[J]. 作物学报, 2004, 30(7):668-674.
Xu Rugen, Chao, Zhu Li, et al. Studies on the heterosis of barley (Hordeum vulgare L.)Ⅰ. Superiority of hybrid F1 from mid-parent or over better-parent[J]. Acta Agronomica Sinica, 2004, 30(7):668-674.
[18]
Fang L, Wang Q, Hu Y, et al. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits[J]. Nature Genetics, 2017, 49(7):1089-1098. https://doi.org/10.1038/ng.3887
Upland cotton (Gossypium hirsutum) is the most important natural fiber crop in the world. The overall genetic diversity among cultivated species of cotton and the genetic changes that occurred during their improvement are poorly understood. Here we report a comprehensive genomic assessment of modern improved upland cotton based on the genome-wide resequencing of 318 landraces and modern improved cultivars or lines. We detected more associated loci for lint yield than for fiber quality, which suggests that lint yield has stronger selection signatures than other traits. We found that two ethylene-pathway-related genes were associated with increased lint yield in improved cultivars. We evaluated the population frequency of each elite allele in historically released cultivar groups and found that 54.8% of the elite genome-wide association study (GWAS) alleles detected were transferred from three founder landraces: Deltapine 15, Stoneville 2B and Uganda Mian. Our results provide a genomic basis for improving cotton cultivars and for further evolutionary analysis of polyploid crops.
[19]
Ma Z Y, He S P, Wang X F, et al. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield[J]. Nature Genetics, 2018, 50(6):803-813. https://doi.org/10.1038/s41588-018-0119-7
[20]
崔秀珍, 李哲, 常俊香, 等. 棉花海陆种间杂交品质性状杂种优势及配合力分析[J]. 湖北农业科学, 2008, 47(6):44-46. http://dx.chinadoi.cn/10.3969/j.issn.0439-8114.2008.06.011
Cui Xiuzhen, Li Zhe, Chang Junxiang, et al. Analysis of heterosis and combining ability for fiber quality traits in F1 hybrid from G.barbadense and G.hirsutum[J]. Hubei Agricultural Science, 2008, 47(6):44-46.
[21]
王巧玲, 李哲. 棉花海陆杂交F1代纤维品质杂种优势及配合力分析[J]. 河南科技学院学报, 2013, 41(3):12-18. http://dx.chinadoi.cn/10.3969/j.issn.1008-7516.2013.03.003
Wang Qiaoling, Li Zhe. Heterosis and combining ability analysis of fiber quality traits of sea-island hybrid F1 generation[J]. Journal of Henan Institute of Science and Technology, 2013, 41(3):12-18.
[22]
张香桂, 周宝良, 陈松, 等. 陆地棉与海岛棉种间杂种优势研究[J]. 江西棉花, 2003, 25(5):25-30. http://dx.chinadoi.cn/10.3969/j.issn.2095-3143.2003.05.006
Zhang Xianggui, Zhou Baoliang, Chen Song, et al. Study on interspecific heterosis between G.hirsutum and G.barbadense[J]. Jiangxi Cotton, 2003, 25(5):25-30.
[23]
Rajeev S, Patil S S, Manjula S M, et al. Studies on heterosis in cotton interspecific heterotic group hybrids (G.hirsutum×G.barbadense) for seed cotton yield and its components[J]. International Journal of Current Microbiology and Applied Sciences, 2018, 7(10):3437-3451. https://doi.org/10.20546/ijcmas.2018.710.399
[24]
Lin S, Feng X, Xu C H, et al. Patterns of genome-wide allele-specific expression in hybrid rice and the implications on the genetic basis of heterosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(12):5653-5658. https://doi.org/10.1073/pnas.1820513116
[25]
Yang M, Wang X C, Ren D Q, et al. Genomic architecture of biomass heterosis in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(30):8101-8106. https://doi.org/10.1073/pnas.1705423114
Heterosis is most frequently manifested by the substantially increased vigorous growth of hybrids compared with their parents. Investigating genomic variations in natural populations is essential to understand the initial molecular mechanisms underlying heterosis in plants. Here, we characterized the genomic architecture associated with biomass heterosis in 200 hybrids. The genome-wide heterozygosity of hybrids makes a limited contribution to biomass heterosis, and no locus shows an obvious overdominance effect in hybrids. However, the accumulation of significant genetic loci identified in genome-wide association studies (GWAS) in hybrids strongly correlates with better-parent heterosis (BPH). Candidate genes for biomass BPH fall into diverse biological functions, including cellular, metabolic, and developmental processes and stimulus-responsive pathways. Important heterosis candidates include,, and some genes that encode key factors involved in cell cycle regulation. Interestingly, transcriptomic analyses in representative hybrid combinations reveal that heterosis candidate genes are functionally enriched in stimulus-responsive pathways, including responses to biotic and abiotic stimuli and immune responses. In addition, stimulus-responsive genes are repressed to low-parent levels in hybrids with high BPH, whereas middle-parent expression patterns are exhibited in hybrids with no BPH. Our study reveals a genomic architecture for understanding the molecular mechanisms of biomass heterosis in, in which the accumulation of the superior alleles of genes involved in metabolic and cellular processes improve the development and growth of hybrids, whereas the overall repressed expression of stimulus-responsive genes prioritizes growth over responding to environmental stimuli in hybrids under normal conditions.

致谢

浙江农林大学戎均康、中国农业科学院棉花研究所张永山和褚丽、陕西安康学院田洪云、中国农业科学院棉花研究所南繁育种中心张霞等人对本研究中杂交组合配制及表型鉴定做出重要贡献,特表感谢。

基金

国家重点研发项目——棉花杂种优势利用技术与强优势杂交种创制(2016YFD0101417)
浙江省自然科学基金(LQ19C020006)
棉花生物学国家重点实验室开放课题(CB2019A02)
浙江农林大学人才启动项目(2018FR038)

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1751 KB)

469

Accesses

0

Citation

Detail

段落导航
相关文章

/