Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (24): 5067-5072.doi: 10.3864/j.issn.0578-1752.2011.24.012

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Polymorphism Analysis of POU1F1 Promoter Regionand It’s Association with Growth Traits

 SONG  Cheng-Yi, ZHAO  Qin, GAO  Bo, WANG  Xiao-Yan, WU  Han, ZHOU  Hui-Yun, JING  Rong-Bin, MAO  Jiu-De   

  1. 1.扬州大学动物科学与技术学院,中国江苏扬州 225009
    2.美国密苏里大学动物科学系,美国密苏里州哥伦比亚市 65211
  • Received:2011-01-10 Online:2011-12-15 Published:2011-06-13

Abstract: 【Objective】 The aim of current study is to obtain the polymorphisms of POU1F1 promoter region, investigate the distribution of these polymorphisms among different pig breeds and detect it’s association with growth traits. 【Method】 PCR cloning, DNA sequencing and PCR-RFLP techniques were applied to detect the polymorphisms of POU1F1 promoter region,and the general linear model was used to analyze it’s association with growth traits. 【Result】 Five polymorphism sites were identified in the 1.5 kb POU1F1 promoter region, and the frequency of A allele in the 5 bp insertion or deletion mutation was the highest in introduced pig breeds, moderate in bred breeds, and lowest in Chinese native breeds. The general linear model analysis indicated that this polymorphism site was significantly associated with growth traits. LSD showed that the pigs with AA genotype had higher body highness, body length, circumference and body weight at 6-month-old of age compared with that of AB and BB pigs, but the difference of body highness, circumference and body weight between AB and BB pigs was not significant, while the body length of AB pigs was significantly higher than that of BB pigs. 【Conclusion】 The A allele in 5bp insertion or deletion mutation site is favorable, and it could be useful in molecular marker assisted selection for growth traits.

Key words: pig, POU1F1 gene, polymorphism, growth traits

[1]Rosenfeld M G. POU-domain transcription factors: powerful developmental regulators. Genes Development, 1991, 5: 897-907.

[2]Tuggle C K, Trenkle A. Control of growth hormone synthesis. Domestic Animal Endocrinology, 1996, 13(1): 1-33.

[3]Cohen L E, Wondisford F E, Radovick S. Role of Pit-1 in the gene expression of growth hormone, prolactin, and thyrotropin. Endocrinology and Metabolism Clinics of North America, 1996, 25(3): 523-540.

[4]Ohta K, Nobukuni Y, Mitsubuchi H, Ohta T, Tohma T, Jinno Y, Endo F, Matsuda I. Characterization of the gene encoding human pituitary-specific transcription factor, Pit-1. Gene, 1992, 122(2): 387-388.

[5]Ohta K, Nobukuni Y, Mitsubuchi H, Fujimoto S, Matsuo N, Inagaki H, Endo F, Matsuda I. Mutations in the Pit-1 gene in children with combined pituitary hormone deficiency. Biochemical and Biophysical Research Communications, 1992, 189(2): 851-855.

[6]Cohen L E, Radovick S. Molecular basis of combined pituitary hormone deficiencies. Endocrine Reviews, 2002, 23(4): 431-442.

[7]Salemi S, Besson A, Eblé A, Gallati S, Pfäffle R W, Mullis P E. New N-terminal located mutation(Q4ter) within the POU1F1-gene(PIT-1) causes recessive combined pituitary hormone deficiency and variable phenotype. Growth Hormone and IGF Research, 2003, 13(5): 264-268.

[8]Hendriks-Stegeman B I, Augustijn K D, Bakker B, Holthuizen P, van der Vliet P C, Jansen M. Combined pituitary hormone deficiency caused by compound heterozygosity for two novel mutations in the POU domain of the Pit1/POU1F1 gene. Journal of Clinical Endocrinology and Metabolism, 2001, 86(4): 1545-1550.

[9]Li S, Crenshaw E B 3rd, Rawson E J, Simmons D M, Swanson L W, Rosenfeld M G. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature, 1990, 347(6293): 528-533.

[10]Banerjee-Basu S, Baxevanis A D. Molecular evolution of the homeodomain family of transcription factors. Nucleic Acids Research, 2001, 29(15): 3258-3269.

[11]Chung H O, Kato T, Tomizawa K, Kato Y. Molecular cloning of pit-1 cDNA from porcine anterior pituitary and its involvement in pituitary stimulation by growth hormone-releasing factor. Experimental and Clinical Endocrinology and Diabetes, 1998, 106(3): 203-210.

[12]Brunsch C, Sternstein I, Reinecke P, Bieniek J. Analysis of associations of PIT1 genotypes with growth, meat quality and carcass composition traits in pigs. Journal of Applied Genetics, 2002, 43(1): 85-91.

[13]Yu T P, Tuggle C K, Schmitz C B, Rothschild M F. Association of PIT1 polymorphisms with growth and carcass traits in pigs. Journal of Animal Science, 1995, 73(5): 1282-1288.

[14]Franco M M, Antunes R C, Silva H D, Goulart L R. Association of PIT1, GH and GHRH polymorphisms with performance and carcass traits in Landrace pigs. Journal of Applied Genetics, 2005, 46(2): 195-200.

[15]Stanceková K, Vasícek D, Peskovicová D, Bulla J, Kúbek A. Effect of genetic variability of the porcine pituitary-specific transcription factor(PIT-1) on carcass traits in pigs. Animal Genetics, 1999, 30(4): 313-315.

[16]Knorr C, Moser G, Müller E, Geldermann H. Associations of GH gene variants with performance traits in F2 generations of European wild boar, Piétrain and Meishan Pigs. Animal Genetics, 1997, 28(2): 124-128.

[17]Kury? J, Pierzcha?a M. Association of POU1F1/RsaI genotypes with carcass traits in pigs. Journal of Applied Genetics, 2001, 42(3): 309-316.

[18]Song C, Gao B, Teng Y, Wang X, Wang Z, Li Q, Mi H, Jing R, Mao  J. MspI polymorphisms in the 3rd intron of the swine POU1F1 gene and their associations with growth performance. Journal of Applied Genetics, 2005, 46(3): 285-289.

[19]宋成义, 赵  芹, 高  波, 孙丽亚, 王宵燕, 吴  晗, 谢  飞, 李碧春. 猪POU1F1基因 5′侧翼区克隆及序列分析. 生物信息学, 2009, 7(3): 184-189.

Song C Y, Zhao Q, Gao B, Sun L Y, Wang X Y, Wu H, Xie F, Li B C. Cloning and sequence analysis of the 5’ Flanking region of Porcine POU1F1 gene. Journal of Bioinformation, 2009, 7(3): 184-189. (in Chinese)

[20]Kerr J, Wood W, Ridgway E C. Basic science and clinical research advances in the pituitary transcription factors: Pit-1 and Prop-1. Current Opinion in Endocrinology, Diabetes and Obesity, 2008, 15(4): 359-363.

[21]Woollard J, Schmitz C B, Freeman A E, Tuggle C K. HinfI polymorphism at the bovine PIT1 locus. Journal of Animal Science, 1994, 72(12): 3267.

[22]Zhao Q, Davis M E, Hines H C. Associations of polymorphisms in the Pit-1 gene with growth and carcass traits in Angus beef cattle. Journal of Animal Science, 2004, 82(8): 2229-2233.

[23]Zhang C, Liu B, Chen H, Lan X, Lei C, Zhang Z, Zhang R. Associations of a HinfI PCR-RFLP of POU1F1 gene with growth traits in Qinchuan Cattle. Animal Biotechnology, 2009, 20(2): 71-74.

[24]Renaville R, Gengler N, Vrech E, Prandi A, Massart S, Corradini C, Bertozzi C, Mortiaux F, Burny A, Portetelle D. Pit-1 gene polymorphism, milk yield, and conformation traits for Italian Holstein-Friesian bulls. Journal of Dairy Science, 1997, 80(12): 3431-3438.

[25]Nie Q, Lei M, Ouyang J, Zeng H, Yang G, Zhang X. Identification and characterization of single nucleotide polymorphisms in 12 chicken growth-correlated genes by denaturing high performance liquid chromatography. Genetics Selection Evolution, 2005, 37(3): 339-360.

[26]Nie Q, Fang M, Xie L, Zhou M, Liang Z, Luo Z, Wang G, Bi W, Liang C, Zhang W, Zhang X. The PIT1 gene polymorphisms were associated with chicken growth traits. BMC Genetics, 2008, 9: 20-24.

[27]Jiang R, Li J, Qu L, Li H, Yang N. A new single nucleotide polymorphism in the chicken pituitary-specific transcription factor(POU1F1) gene associated with growth rate. Animal Genetics, 2004, 35(4): 344-346.

[28]Song C Y, Gao B, Teng S H, Wang X Y, Xie F, Chen G H, Wang Z Y, Jing R B, Mao J D. Polymorphisms in intron 1 of the porcine POU1F1 gene. Journal of Applied Genetics, 2007, 48(4): 371-374.

[29]Bidanel J P, Milan D, Iannuccelli N, Amigues Y, Boscher M Y, Bourgeois F, Caritez J C, Gruand J, Le Roy P, Lagant H, Quintanilla R, Renard C, Gellin J, Ollivier L, Chevalet C. Detection of quantitative trait loci for growth and fatness in pigs. Genetic Selection Evolution, 2001, 33(3): 289-309.
[1] LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235.
[2] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[3] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[4] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[5] MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663.
[6] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[7] DENG FuLi,SHEN Dan,ZHONG RuQing,ZHANG ShunFen,LI Tao,SUN ShuDong,CHEN Liang,ZHANG HongFu. Non-Starch Polysaccharide Enzymes Cocktail of Corn-Miscellaneous Meal-Based Diet Optimization by In Vitro Method and Its Effects on Intestinal Microbiome in Finishing Pigs [J]. Scientia Agricultura Sinica, 2022, 55(16): 3242-3255.
[8] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[9] LIANG Peng,ZHANG TianWen,MENG Ke,SHAO ShunCheng,ZOU ShiFan,RONG Xuan,QIANG Hao,FENG DengZhen. Association Analysis of the ADIPOQ Variation with Sheep Growth Traits [J]. Scientia Agricultura Sinica, 2022, 55(11): 2239-2256.
[10] XU ZhiYing,WANG BaiCui,MA XiaoLan,JIA ZiMiao,YE XingGuo,LIN ZhiShan,HU HanQiao. Polymorphism Analysis Among Chromosomes of Dasypyrum villosum 6V#2 and 6V#4 and Wheat 6A and 6D Based on Wheat SNP Chip [J]. Scientia Agricultura Sinica, 2021, 54(8): 1579-1589.
[11] HU RongRong,DING ShiJie,GUO Yun,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,TANG ChangBo,ZHOU GuangHong. Effects of Trolox on Proliferation and Differentiation of Pig Muscle Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(24): 5290-5301.
[12] ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals [J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326.
[13] TANG ZhenShuang,YIN Dong,YIN LiLin,MA YunLong,XIANG Tao,ZHU MengJin,YU Mei,LIU XiaoLei,LI XinYun,QIU XiaoTian,ZHAO ShuHong. To Evaluate the “Two-Step” Genomic Selection Strategy in Pig by Simulation [J]. Scientia Agricultura Sinica, 2021, 54(21): 4677-4684.
[14] ZHANG DanDan,XU TengTeng,GAO Di,QI Xin,NING Wei,RU ZhenYuan,ZHANG XiangDong,GUO TengLong,SHENTU LuYan,YU Tong,MA YangYang,LI YunSheng,ZHANG YunHai,CAO ZuBing. Transcription Factor TEAD4 Regulates Early Embryonic Development in Pigs [J]. Scientia Agricultura Sinica, 2021, 54(20): 4456-4465.
[15] SHI Jiang,WANG JiaTong,PENG QunHua,LÜ Haipeng,BALDERMANN Susanne,LIN Zhi. Changes in Lipid-Soluble Pigments in Fresh Tea Leaves Treated by Methyl Jasmonate and During Postharvest Oolong Tea Manufacturing [J]. Scientia Agricultura Sinica, 2021, 54(18): 3984-3997.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!