Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (11): 2386-2393.doi: 10.3864/j.issn.0578-1752.2013.11.024

• RESEARCH NOTES • Previous Articles     Next Articles

Responses of Spectral Reflectance, Photosynthesis and Chlorophyll Fluorescence in Cotton During Drought Stress and Rewatering

 XUE  Hui-Yun, ZHANG  Yong-Jiang, LIU  Lian-Tao, SUN  Hong-Chun, LI  Cun-Dong   

  1. College of Agriculture, Agricultural University of Hebei/Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding 071001, Hebei
  • Received:2012-11-01 Online:2013-06-01 Published:2012-12-24

Abstract: 【Objective】 The objective of this paper was to identify photosynthetic and spectral indicators related to drought stress through analysis of photosynthetic traits and spectral index in cotton (Gossypium hirsutum L.). 【Method】 The transgenic cotton cultivar Yinrui 361 was used as material, leaf spectral reflectance, photosynthesis and chlorophyll fluorescence characteristics were studied by a pot experiment during the continuous drought stress and rewatering.【Result】Two years results indicated that leaf relative water content (RWC), net photosynthesis (Pn), stomatal conductance (Gs), transpiration rate (Tr), maximal photochemical efficiency of PSⅡ in the dark (Fv/Fm), actual photochemical efficiency of PSⅡ in the light (ΦPSII), photochemical quenching coefficient (qP) and photochemical reflectance index (PRI) showed a downward trend along with the prolonging of the drought stress. Stomatal limitation value (Ls) increased at the early time, and then decreased later. While non-photochemical quenching coefficient (NPQ) showed an increasing trend. After rewatering, most parameters could not recover to the initial state except RWC. Compared with the initial state on two-year average, Pn, Gs, Tr, Fv/Fm, ΦPSII, qP and PRI in the 4th day of stress decreased by 53.1%, 79.9%, 66.0%, 3.8%, 11.0%, 5.7% and 18.4%, respectively. While Ls and NPQ increased by 98.1% and 28.6%, respectively. Among them, only Pn, Gs, Tr, Ls, Fv/Fm and PRI had significant differences between values in the 4th day and the initial state, and R2 were 0.7640, 0.7058, 0.5625, 0.3665, 0.7319 and 0.4378, respectively. 【Conclusion】 It was concluded that Pn, Gs, Tr, Ls, Fv/Fm and PRI could be considered as reliable indicators in cotton leaves at the first stage of drought stress, while Pn, Gs, Fv/Fm can sensitively and accurately reflect the water condition of cotton leaves under continuous drought stress.

Key words: cotton , drought stress and rewatering , spectral reflectance , photosynthesis , chlorophyll fluorescence

[1]许大全. 光合作用效率. 上海: 上海科学技术出版社, 2009.

Xu D Q. Photosynthetic Efficiency. Shanghai: Shanghai Scientific and Technical Publishers, 2009. (in Chinese)

[2]Guo W H, Li B, Huang Y M, Zhao H X, Zhang X S. Effects of different water stresses on eco-physiological characteristics of Hippophae rhamnoides seedlings. Acta Botanica Sinica, 2003, 45(10): 1238-1244.

[3]李东晓, 李存东, 孙传范, 孙红春, 刘连涛, 张永江, 肖凯. 干旱对棉花主茎叶片内源激素含量与平衡的影响. 棉花学报, 2010, 22(3): 231-235.

Li D X, Li C D, Sun C F, Sun H C, Liu L T, Zhang Y J, Xiao K. The effects of drought on endogenous hormone contents and balance in main stem leaves of cotton. Cotton Science, 2010, 22(3): 231-235. (in Chinese)

[4]朱根海, 张荣铣. 叶片含氮量与光合作用. 植物生理学通讯, 1985(2): 9-12.

Zhu G H, Zhang R X. Leaf nitrogen content and photosynthesis. Plant Physiology Communications, 1985(2): 9-12. (in Chinese)

[5]董树亭. 高产冬小麦群体光合能力与产量关系的研究. 作物学报, 1991, 17(6): 461-469.

Dong S T. Studies on the relationship between canopy apparent photosynthesis and grain yield in high yielding winter wheat. Acta Agronomica Sinica, 1991, 17(6): 461-469. (in Chinese)

[6]牛铁泉, 田给林, 薛仿正, 温鹏飞, 李绍华. 半根及半根交替水分胁迫对苹果幼苗光合作用的影响. 中国农业科学, 2007, 40(7): 1463-1468.

Niu T Q, Tian G L, Xue F Z, Wen P F, Li S H. Response of photosynthesis of micropropagated apple plants to half root and alternate half root water stress. Scientia Agricultura Sinica, 2007, 40(7): 1463-1468. (in Chinese)

[7]Singh S K, Reddy K R. Regulation of photosynthesis, ?uorescence, stomatal conductance and water-use ef?ciency of cowpea (Vigna unguiculata L.) under drought. Journal of Photochemistry and Photobiology B: Biology, 2011, 105(1): 40-50.

[8]Longenberger P S, Smith C W, Duke S E, Mcmichael B L. Evaluation of chlorophyll fluorescence as a tool for the identification of drought tolerance in upland cotton. Euphytica, 2009, 166(1): 25-33.

[9]Li D X, Li C D, Sun H C, Liu L T, Zhang Y J. Photosynthetic and chlorophyll fluorescence regulation of upland cotton (Gossiypium hirsutum L.) under drought conditions. Plant Omics Journal, 2012, 5(5): 432-437.

[10]罗俊, 张木清, 林彦铨, 张华, 陈如凯. 甘蔗苗期叶绿素荧光参数与抗旱性关系研究. 中国农业科学, 2004, 37(11): 1718-1721.

Luo J, Zhang M Q, Lin Y Q, Zhang H, Chen R K. Studies on the relationship of chlorophyll fluorescence characters and drought tolerance in seedling of sugarcane under water stress. Scientia Agriultura Sinica, 2004, 37(11): 1718-1721. (in Chinese)

[11]薛忠财, 高辉远, 彭涛, 姚广. 光谱分析在植物生理生态中的研究. 植物生理学报, 2011, 47(4): 313-320.

Xue Z C, Gao H Y, Peng T, Yao G. Application of spectral reflectance on research of plant eco-physiology. Plant Physiology Journal, 2011, 47(4): 313-320. (in Chinese)

[12]Bowman W D. The relationship between leaf water status, gas exchange, and spectral reflectance in cotton leaves. Remote Sensing of Environment, 1989, 30(3): 249-255.

[13]Sun P, Grignetti A, Liu S, Casacchia R, Salvatori R, Pietrini F, Loreto F, Centritto M. Associated changes in physiological parameters and spectral reflectance indices in olive (Olea europaea L.) leaves in response to different levels of water stress. International Journal of Remote Sensing, 2007, 29(6): 1725-1743.

[14]Imanishi J, Sugimoto K, Morimoto Y. Detecting drought status and LAI of two Quercus species canopies using derivative spectra. Computers and Electronics in Agriculture, 2004, 43(2): 109-129.

[15]Yu G, Miwa T, Nakayama K, Matsuoka N, Kon H. A proposal for universal formulas estimating leaf water status of herbaceous and woody plants based on spectral reflectance properties. Plant and Soil, 2000, 227(1/2): 47-58.

[16]Zhang Y J, Liu L Y, Hou M Y, Liu L T, Li C D. Progress in remote sensing of vegetation chlorophyll fluorescence. Journal of Remote Sensing, 2009, 963(5): 10-16.

[17]Gamon J A, Penuelas J, Field C B. A narrow-waveband spectral index that track diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 1992, 41(1): 35-44.

[18]Evain S, Flexas J, Moya I. A new instrument for passive       remote sensing: 2. Measurement of leaf and canopy reflectance changes at 531 nm and their relationship with photosynthesis and chlorophyll fluorescence. Remote Sensing of Environment, 2004, 91(2): 175-185.

[19]余叔文, 汤章城. 植物生理与分子生物学. 2版. 北京: 科学出版社, 1998.

Yu S W, Tang Z C. Plant Physiological and Molecular Biology. 2nd ed. Beijing: Science Press, 1998. (in Chinese)

[20]许大全. 光合作用测定及研究中一些值得注意的问题. 植物生理学通讯, 2006, 42(6): 1163-1167.

Xu D Q. Some note worthy problems in measurement and investigation of photosynthesis. Plant Physiology Communications, 2006, 42(6): 1163-1167. (in Chinese)

[21]付秋实, 李红岭, 崔健, 赵冰, 郭仰东. 水分胁迫对辣椒光合作用及相关生理特性的影响. 中国农业科学, 2009, 42(5): 1859-1866.

Fu Q S, Li H L, Cui J, Zhao B, Guo Y D. Effects of water stress on photosynthesis and associated physiological characters of Capsicum annuum L. Scientia Agricultura Sinica, 2009, 42(5): 1859-1866. (in Chinese)

[22]Galme J, Medrano H, Flexas J. Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytologist, 2007, 175(1): 81-93.

[23]陈建明, 俞晓平, 程家安. 叶绿素荧光动力学及其在植物抗逆生理研究中的应用. 浙江农业学报, 2006, 18(1): 51-55.

Chen J M, Yu X P, Cheng J A. The application of chlorophyll fluorescence kinetics in the study of physiological responses of plants to environmental stresses. Acta Agriculturae Zhejiangensis, 2006, 18(1): 51-55. (in Chinese)

[24]刘贤赵, 康绍忠, 邵明安, 王力. 土壤水分与遮荫水平对棉花叶片光合特性的影响研究. 应用生态学报, 2000, 11(3): 377-381.

Liu X Z, Kang S Z, Shao M A, Wang L. Effects of soil moisture and shading levels on photosynthetic characteristics of cotton leaves. Journal of Applied Ecology, 2000, 11(3): 377-381. (in Chinese)

[25]韩瑞宏, 卢欣石, 高桂娟, 杨秀娟. 紫花苜蓿对干旱胁迫的光合生理响应. 生态学报, 2007, 27(12): 5229-5237.

Han R H, Lu X S, Gao G J, Yang X J. Photosynthetic physiological response of alfalfa (Medicago sativa) to drought stress. Acta Ecologica Sinica, 2007, 27(12): 5229-5237. (in Chinese)

[26]Nabil I, Kun F C. Gas exchange, chlorophyll ?uorescence, and osmotic adjustment in two mango cultivars under drought stress. Acta Physiologiae Plantarum, 2008, 30(6): 769-777.

[27]Penuelas J, Gamon J A, Fredeen A L, Merino J, Field C B. Reflectance indices associated with physiological changes in nitrogen and water limited sunflower leaves. Remote Sensing of Environment, 1994, 48(2): 135-146.

[28]Gamon J A, Serrano L, Surfus J S. The photochemical reflectance index:

An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia, 1997, 112(4): 492-501.

[29]Goward S N, Xue Y K, Czajkowski K P. Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements: An exploration with the simplified simple biosphere model. Remote Sensing of Environment, 2002, 79(2/3): 225-242.
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[3] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[4] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
[5] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[6] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[7] WAN HuaQin,GU Xu,HE HongMei,TANG YiFan,SHEN JianHua,HAN JianGang,ZHU YongLi. Effect of CO2 Like Fertilization on Rice Growth by HCO3- in Biogas Slurry [J]. Scientia Agricultura Sinica, 2022, 55(22): 4445-4457.
[8] ZHAO LiMing,HUANG AnQi,WANG YaXin,JIANG WenXin,ZHOU Hang,SHEN XueFeng,FENG NaiJie,ZHENG DianFeng. Effect of Deep Tillage Under Continuous Rotary Tillage on Yield Formation of High-Quality Japonica Rice in Cold Regions [J]. Scientia Agricultura Sinica, 2022, 55(22): 4550-4566.
[9] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[10] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[11] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[12] WANG Ning,FENG KeYun,NAN HongYu,ZHANG TongHui. Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Root Characteristics and Yield of Cotton Under Different Water Conditions [J]. Scientia Agricultura Sinica, 2022, 55(11): 2187-2201.
[13] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[14] LI JianXin,WANG WenPing,HU ZhangJian,SHI Kai. Effects of Simulated Acid Rain Conditions on Plant Photosynthesis and Disease Susceptibility in Tomato and Its Alleviation of Brassinosteroid [J]. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738.
[15] TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China [J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!