Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (19): 3683-3693.doi: 10.3864/j.issn.0578-1752.2016.19.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Isolation of Thinopyrum ponticum Genome Specific Repetitive Sequences and Their Application for Effective Detection of Alien Segments in Wheat

YAO Han1, 2, TANG Cai-guo1, 2, ZHAO Jing1, 2, ZHENG Qi3, LI Bin3, HAO Chen-yang2, LI Zhen-sheng3, ZHANG Xue-yong2   

  1. 1College of Agriculture, Nanjing Agricultural University, Nanjing 210095
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    3Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/State Key Laboratory of Plant Cell and Chromosome Engineering, Beijing 100101
  • Received:2016-04-15 Online:2016-10-01 Published:2016-10-01

Abstract: 【Objective】As a tertiary gene pool of wheat, Thinopyrum genus has many useful traits, such as tolerance to both abiotic and biotic stresses. DNA repetitive sequence is one major component for genomes of most eukaryotes. Isolation of genome specific repeats is very helpful for understanding of sub-genome component of polyploid species, their evolution and utilization in crop improvement. To identify Th. ponticum chromatin in wheat genetic background more accurately and efficiently, genome specific repetitive sequences were cloned from Th. ponticum.【Method】Screening the plasmid library of Th. ponticum via dot-blot hybridization, combining with fluorescence in situ hybridization (FISH) analysis of the wheat-Th. ponticum partial amphiploids, Th. ponticum genome specific repetitive sequences were isolated and their distribution patterns on chromosomes were characterized by FISH. The Th. ponticum genome specific repeats were analyzed by Repeat Masker, Triticeae Repeat Sequence Database and NCBI. A set of PCR primers was designed for detecting Th. ponticum chromosomal fragments. Wheat-Th. ponticum hybrid derivatives were employed to testify the genome specificity and effectiveness of these repeats in identifying Th. alien fragments in wheat genetic background. 【Result】Seven Th. ponticum genome specific repetitive sequences were obtained. Their FISH signals dispersively covered all chromosomes in Th. ponticum and Th. intermedium. Furthermore, they could discriminate chromosomes of Th. ponticum and Th. intermedium from wheat chromosomes without wheat DNA block by FISH. This was further proved in wheat-Th. ponticum substitution lines and translocation lines. Ten PCR primers were developed for efficient amplification of Th. ponticum segments in wheat. Their detection efficiency ranged from 73.3% to 95% in 109 wheat-Th. ponticum derivatives. 【Conclusion】Th. ponticum genome specific repetitive sequences were isolated, which can be used for detection of wheatgrass fragments in wheat by FISH or PCR amplification.

Key words: T. aestivum, Th. ponticum, genome specific repetitive sequences, FISH, PCR

[1]    董玉琛. 小麦的基因源. 麦类作物学报, 2000, 20(3): 78-81.
Dong Y C. Gene pools of common wheat. Journal of Triticeae Crops, 2000, 20(3): 78-81. (in Chinese)
[2]    Chai J F, Liu X, Jia J Z. Homoeologous cloning of ω-secalin gene family in a wheat 1BL/1RS translocation. Cell Research, 2005, 15(8): 658-664.
[3]    Luan Y, Wang X G, Liu W H, Li C Y, Zhang J P, Gao A N, Wang Y D, Yang X M, Li L H. Production and identification of wheat-Agropyron cristatum 6P translocation lines. Planta, 2010, 232(2): 501-510.
[4]    Cao A Z, Xing L P, Wang X Y, Yang X M, Wang W, Sun Y L, Qian C, Ni J L, Chen Y P, Liu D J, Wang X E, Chen P D. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(19): 7727-7732.
[5]    Kang H Y, Wang Y, Fedak G, Cao W G, Zhang H Q, Fan X, Sha L N, Xu L L, Zheng Y L, Zhou Y H. Introgression of chromosome 3Ns from Psathyrostachys huashanica into wheat specifying resistance to stripe rust. PLoS One, 2011, 6(7): e21802.
[6]    Li H J, Wang X M. Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. Journal of Genetics and Genomics, 2009, 36(9): 557-565.
[7]    Niu Z, Klindworth D L, Yu G, LFriesen T, Chao S, Jin Y, Cai X, Ohm J B, Rasmussen J B, XuSteven S. Development and characterization of wheat lines carrying stem rust resistance gene Sr43 derived from Thinopyrum ponticum. Theoretical and Applied Genetics, 2014, 127(4): 969-980.
[8]    张学勇, 李大勇. 小麦及其近亲基因组中的DNA重复序列研究进展. 中国农业科学, 2000, 33(5): 1-7.
Zhang X Y, Li D Y. Repetitive DNA sequences in wheat and its relatives. Scientia Agricultura Sinica, 2000, 33(5): 1-7. (in Chinese)
[9]    Flavell R B, Smith D B. Nucleotide sequence organization in the wheat genome. Heredity, 1976, 37(2): 231-252.
[10]   Dvo?ák J, Zhang H B. Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(24): 9640-9644.
[11]   Heslop-Harrison J S. Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. The Plant Cell, 2000, 12(5): 617-635.
[12]   Biscotti M A, Olmo E, Heslop-Harrison J S. Repetitive DNA in eukaryotic genomes. Chromosome Research, 2015, 23(3): 415-420.
[13]   Kato A, Vega J M, Han F P, Lamb J C, Birchler J A. Advances in plant chromosome identification and cytogenetic techniques. Current Opinion in Plant Biology, 2005, 8(2): 148-154.
[14]   Fu S L, Tang Z X, Ren Z L, Zhang H Q, Yan B J. Isolation of rye-specific DNA fragment and genetic diversity analysis of rye genus Secale L. using wheat SSR markers. Journal of Genetics, 2010, 89(4): 489-492.
[15]   Komuro S, Endo R, Shikata K, Kato A. Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure. Genome, 2013, 56(3): 131-137.
[16]   Cai Z X, Liu H J, He Q Y, Pu M W, Chen J, Lai J S, Li X X, Jin W W. Differential genome evolution and speciation of Coix lacryma-jobi L. and Coix aquatica Roxb. hybrid guangxi revealed by repetitive sequence analysis and fine karyotyping. BMC Genomics, 2014, 15(1): 1025-1040.
[17]   Mehrotra S, Goyal V. Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genomics Proteomics Bioinformatics, 2014, 12: 164-171.
[18]   孙善澄. 小偃麦类型与物种形成的探讨. 作物学报, 1980, 6(1): 1-14.
Sun S C. Research on Triticum Agropyron form and species formation. Acta Agronomica Sinica, 1980, 6(1): 1-14. (in Chinese)
[19]   Zhang Z Y, Xin Z Y, Larkin P J. Molecular characterization of a Thinopyrum intermedium group 2 chromosome (2Ai-2) conferring resistance to barley yellow dwarf virus. Genome, 2001, 44(6): 1129-1135.
[20]   Chen Q, Conner R L, Li H J, Sun S C, Ahmad F, Laroche A, Graf R J. Molecular cytogenetic discrimination and reaction to wheat streak mosaic virus and the wheat curl mite in Zhong series of wheat-Thinopyrum intermedium partial amphiploids. Genome, 2003, 46(1): 135-145.
[21]   Wang M J, Zhang Y, Lin Z S, Ye X G, Yuan Y P, Ma W, Xin Z Y. Development of EST-PCR markers for Thinopyrum intermedium chromosome 2Ai#2 and their application in characterization of novel wheat-grass recombinants. Theoretical and Applied Genetics, 2010, 121(7): 1369-1380.
[22]   Ayala-Navarrete L I, Mechanicos A A, Gibson J M, Singh D, Bariana H S, Fletcher J, Shorter S, Larkin P J. The Pontin series of recombinant alien translocations in bread wheat: single translocations integrating combinations of Bdv2, Lr19 and Sr25 disease-resistance genes from Thinopyrum intermedium and Th. ponticum. Theoretical and Applied Genetics, 2013, 126(10): 2467-2475.
[23]   Wang Y H, Wang H G. Characterization of three novel wheat-Thinopyrum intermedium addition lines with novel storage protein subunits and resistance to both powdery mildew and stripe rust. Journal of Genetics and Genomics, 2016, 43(1): 45-48.
[24]   李振声, 容珊, 陈漱阳, 穆素梅, 钟冠昌. 小麦远缘杂交. 北京: 中国农业科学技术出版社, 1985.
Li Z S, Rong S, Chen S Y, Mu S M, Zhong G C. Wheat Wide Hybridization. Beijing: Agricultural science and Technology Press of China, 1985. (in Chinese)
[25]   Xia G M, Xiang F N, Zhou A F, Wang H, Chen H M. Asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Agropyron elongatum (Host) Nevishi. Theoretical and Applied Genetics, 2003, 107(2): 299-305.
[26]   Jiang J M, Gill B S. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome, 2006, 49(9): 1057-1068.
[27]   Kato A, Lamb J C, Birchler J A. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(37): 13554-13559.
[28]   Zhang J, Long H, Pan Z F, Liang J J, Yu S Y, Deng G B, Yu M Q. Characterization of a genome-specific Gypsy-like retrotransposon sequence and development of a molecular marker specific for Dasypyrum villosum (L.). Journal of genetics, 2013, 92(1): 103-108.
[29]   Deng C L, Bai L L, Li S F, Zhang Y X, Li X, Chen Y H, Wang R R C, Han F P, Hu Z M. DOP–PCR based painting of rye chromosomes in a wheat background. Genome, 2014, 57(9): 473-479.
[30]   McIntyre C L, Clarke B C, Appels R. Amplification and dispersion of repeated DNA sequences in the Triticeae. Plant Systematics and Evolution, 1988, 160(1/2): 39-59.
[31]   Zhang H B, Dvo?ák J. Characterization and distribution of an interspersed repeated nucleotide sequence from Lophopyrum elongatum and mapping of a segregation-distortion factor with it. Genome, 1990, 33(6): 927-936.
[32]   Bournival B, Obanni M, Abad A, Ohm H, Mackenzie S. Isolation of a new species-specific repetitive sequence from Thinopyrum elongatum and its use in the studies of alien translocations. Genome, 1994, 37(1): 97-104.
[33]   Wang R R C, Wei J Z. Variations of two repetitive DNA sequences in several Triticeaegenomes revealed by polymerase chain reaction and sequencing. Genome, 1995, 38(6): 1221-1229.
[34]   张学勇, 董玉琛, 李培. E和St基因组特异RAPD片段在部分小麦族植物中的分布. 遗传学报, 1998, 25(2): 131-141.
Zhang X Y, Dong Y C, Li P. Distribution of E- and St- specific RAPD fragments in few genomes of Triticeae. Acta Genetica Sinica, 1998, 25(2): 131-141. (in Chinese)
[35]   Sharp P J, Kreis M, Shewry P R, Gale M D. Location of β-amylase sequences in wheat and its relatives. Theoretical and Applied Genetics, 1988, 75(2): 286-290.
[36]   Han F P, Gao Z, Yu W C, Birchler J A. Minichromosome analysis of chromosome pairing, disjunction, and sister chromatid cohesion in maize. The Plant Cell, 2007, 19(12): 3853-3863.
[37]   Li B C, Choulet F, Heng Y F, Hao W W, Paux E, Liu Z, Yue W, Jin W W, Feuillet C, Zhang X Y. Wheat centromeric retrotransposons: the new ones take a major role in centromeric structure. The Plant Journal, 2013, 73(6): 952-965.
[38]   Wicker T, Matthews D E, Keller B. TREP: a database for Triticeae repetitive elements. Trends in Plant Science, 2002, 7(12): 561-562.
[39]   Zhang X Y, Li Z S, Chen S Y. Production and identification of three 4Ag (4D) substitution lines of Triticum aestivum-Agropyron: relative transmission rate of alien chromosomes. Theoretical and Applied Genetics, 1992, 83(6/7): 707-714.
[40]   郝薇薇, 汤才国, 李葆春, 郝晨阳, 张学勇. 小麦-十倍体长穗偃麦草广谱抗锈易位系的鉴定及分析. 中国农业科学, 2012, 45(16): 3240-3248.
Hao W W, Tang C G, Li B C, Hao C Y, Zhang X Y. Analysis of wheat-Thinopyrum ponticum translocation lines with broad spectrum resistance to stripe rusts. Scientia Agricultura Sinica, 2012, 45(16): 3240-3248. (in Chinese)
[41]   Fuchs J, Houben A, Brandes A, Schubert I. Chromosome ‘painting’ in plants-A feasible technique?. Chromosoma, 1996, 104(5): 315-320.
[42]   Heslop-Harrison J S. RNA, genes, genomes and chromosomes: repetitive DNA sequences in plants. Chromosomes Today, 2000, 13: 45-56.
[43]   王玉海, 何方, 鲍印广, 明东风, 董磊, 韩庆典, 李莹莹, 王洪刚. 高抗白粉病小麦-山羊草新种质TA002的创制和遗传研究. 中国农业科学, 2016, 49(3): 418-428.
Wang Y H, He F, Bao Y G, Ming D F, Dong L, Han Q D, Li Y Y, Wang H G. Development and genetic analysis of a novel wheat-Aegilops germplasm TA002 resistant to powdery mildew. Scientia Agricultura Sinica, 2016, 49(3): 418-428. (in Chinese)
[44]   Li W L, Chen P D, Qi L L, Liu D J. Isolation, characterization and application of a species-specific repeated sequence from Haynaldia villosa. Theoretical and Applied Genetics, 1995, 90(3/4): 526-533.
[45]   刘成, 杨足君, 冯娟, 迟世华, 周建平, 任正隆. 黑麦染色体组中一个新重复序列的发现、定位与应用. 中国农业科学, 2007, 40(8): 1587-1593.
Liu C, Yang Z J, Feng J, Chi S H, Zhou J P, Ren Z L. Detection, mapping and application of a new repetitive DNA sequence in Rye (Secale cereale L.) genome. Scientia Agricultura Sinica, 2007, 40(8): 1587-1593. (in Chinese)
[46]   GonzÁlez-GarcÍa M, Cuacos M, GonzÁlez-SÁnchez M, Puertas M J, Vega J M. Painting the rye genome with genome-specific sequences. Genome, 2011, 54(7): 555-564.
[47]   Liu Z, Yue W, Li D Y, Wang R R C, Kong X Y, Lu K, Wang G X, Dong Y S, Jin W W, Zhang X Y. Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma, 2008, 117(5): 445-456.
[1] DONG Lei, DONG Qing, ZHANG WenLi, HU XiaoLong, WANG HongGang, WANG YuHai. Karyotypic Analysis of Aegilops speltoides Revealed by FISH [J]. Scientia Agricultura Sinica, 2017, 50(8): 1378-1387.
[2] ZHU YingChun, WANG Yang, FAN XiaoPan, MA LiZhen, WANG KaiLi. Metagenomic Analysis of Bacterial Phases of Catfish Fillets Under Different Storage Conditions [J]. Scientia Agricultura Sinica, 2017, 50(5): 913-923.
[3] ZHOU Xing-long, SONG Li-wen, YANG Shun-yi, LI Jing-jing, WANG Jin-jun, ZHANG Xin-hu, SHEN Hui-min. Analysis of Detoxification Enzyme Genes in the Multiple Pesticide-Resistant Strain of Tetranychus urticae [J]. Scientia Agricultura Sinica, 2016, 49(9): 1696-1704.
[4] SUN Ming-yue, ZHOU Jun, TAN Qiu-ping, FU Xi-ling, CHEN Xiu-de, LI Ling, GAO Dong-sheng. Analysis of Basic Leucine Zipper Genes and Their Expression During Bud Dormancy in Apple (Malus×domestica) [J]. Scientia Agricultura Sinica, 2016, 49(7): 1325-1345.
[5] GAO Kun, SHANG Meng-ke, QIAN He-ying, QIN Guang-xing, GUO Xi-jie. Digital Gene Expression Analysis of Silkworm Infected by Bombyx mori Bidensovirus Zhenjiang Strain [J]. Scientia Agricultura Sinica, 2016, 49(17): 3453-3464.
[6] DU Hai, RAN Feng, LIU Jing, WEN Jing, MA Shan-shan, KE Yun-zhuo, SUN Li-ping, LI Jia-na. Genome-Wide Expression Analysis of Glucosinolate Biosynthetic Genes in Arabidopsis Across Diverse Tissues and Stresses Induction [J]. Scientia Agricultura Sinica, 2016, 49(15): 2879-2897.
[7] CHEN Zhe, SONG Ge, ZHOU Xue-ping, WU Jian-xiang. Preparation and Application of Monoclonal Antibodies Against Watermelon mosaic virus (WMV) [J]. Scientia Agricultura Sinica, 2016, 49(14): 2711-2724.
[8] LIU Gong-ming, SUN Jing-xin, LI Peng, XU Xing-lian, ZHANG Wan-gang, HUANG Ming, ZHOU Guang-hong. Detection of Endpoint Temperature of Chicken and Fish by Near-Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2016, 49(1): 155-162.
[9] DU Pei, LIU Hua, LI Li-na, QIN Li, ZHANG Zhong-xin, HUANG Bing-yan, DONG Wen-zhao, TANG Feng-shou, QI Zeng-jun, ZHANG Xin-you. Chromosome Analysis of Peanut (Arachis hypogaea L.) Based on Sequential GISH-FISH [J]. Scientia Agricultura Sinica, 2015, 48(9): 1854-1863.
[10] GUAN Wei, ZHANG Yun-xia, YANG Shu-qiong, CHEN Jin-feng, LOU Qun-feng. Creation and Chromosome FISH Identification of Cucumber Materials with Different Ploidies [J]. Scientia Agricultura Sinica, 2014, 47(17): 3513-3522.
[11] MA Qing-Hua-1, CHEN Xin-2, ZHAO Tian-Tian-1, LIU Qing-Zhong-2, WANG Gui-Xi-1. Analysis of the Genetic Relationship of the Main Cultivars of Ping’ou Hybrid Hazelnut (C. heterophylla×C. avellana) by FISH-AFLP Markers [J]. Scientia Agricultura Sinica, 2013, 46(23): 5003-5011.
[12] LIU Yan-Yang, CUI Cheng-Qi, MEI Hong-Xian, WU Ke, ZHENG Yong-Zhan. Exploration and Application of Non-Denaturing FISH on Chromosomes Research in Sesame (Sesamum indicum L.) [J]. Scientia Agricultura Sinica, 2013, 46(17): 3729-3735.
[13] CHEN Yue-ying,GUO Jun,DAI Xi-wei,DUAN Ying-hui,WEI Guo-rong,HUANG Li-li,KANG Zhen-sheng
. Cloning and Expression Analysis of a Conidiation-Related Gene PsCon1 from Puccinia striiformis f.sp. tritici#br# [J]. Scientia Agricultura Sinica, 2010, 43(6): 1156-1163 .
[14] YUAN Wei-ling,CAO Cou-gui,LI Cheng-fang,ZHAN Ming,CAI Ming-li,WANG Jin-ping
. Methane and Nitrous Oxide Emissions from Rice-Fish and Rice-Duck Complex Ecosystems and the Evaluation of Their Economic Significance
[J]. Scientia Agricultura Sinica, 2009, 42(6): 2052-2060 .
[15] WANG Yong,ZHU Li-quan,RONG Xiao-ying,CHEN Xiao-dan,TANG Zhang-lin,WANG Xiao-jia
. Study on High-Resolution 5S rDNA –FISH of Brassica oleracea Chromosome 2
[J]. Scientia Agricultura Sinica, 2009, 42(12): 4294-4300 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!