Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (24): 5031-5040.doi: 10.3864/j.issn.0578-1752.2011.24.008

• HORTICULTURE • Previous Articles     Next Articles

Mapping QTLs for Fruit-Associated Traits in Cucumis sativus L.

 MIAO  Han, GU  Xing-Fang, ZHANG  Sheng-Ping, ZHANG  Zhong-Hua, HUANG  San-Wen, WANG  Ye, CHENG  Zhou-Chao, ZHANG  Ruo-Wei, MU  Sheng-Qi, LI  Man, ZHANG  Zhen-Xian, FANG  Zhi-Yuan   

  1. 1.中国农业科学院蔬菜花卉研究所,北京 100081
    2.中国农业大学农学与生物技术学院,北京 100193
  • Received:2011-07-12 Online:2011-12-15 Published:2011-11-01

Abstract: 【Objective】As one of the important fruit vegetables, cucumber (Cucumis sativus L.) owns the characters of fructification which to be major focused in the study of breeding. Generally, the characters of fructification can be classified into two categories: related characters of production and fruit quality. These two major characters have a significant influence on the production and commercial production of cucumber. QTL mapping and analysis were conducted for fructification characters of cucumber in this study. While these results will be beneficial for understanding the genetic mechanism of fructification characters, they also can provide helpful information for molecular marker assisted selection of cucumber breeding for high yield, gene fine mapping and gene cloneing. 【Method】 A SSR linkage map of cucumber was constructed using 148 F9 recombinant inbred lines (RILs) which originated from a narrow-cross between 9110Gt and 9930 in an experiment. Phenotypic data were investigated four times in various seasons. In this study, the multiple QTL model (MQM) method of software package MapQTL version 4.0 was used to map and analyze QTLs.【Result】Eighteen QTLs were detected for 8 commercial fruit characters: 3 for fruit lengths(Fl ), 1 for fruit stalk lengths(Fsl) , 1 for fruit diameter(Fd), 1 for fruit length / diameter ratio(Ldr) , 5 for fruit length / stalk ratio(Lsr), 4 for fruit spine color (Fsc), 1 for fruit spine density (Fsd), 2 for fruit warts size(Fws), 14 QTLs were detected for 4 traits of mature fruit for seed harvest (length, diameter, weight and color). These QTLs were practically mapped on chromosome 5 and 6, respectively. Twenty-four QTLs explained phenotypic variation more than 10%. Their LOD values varied between 3.53 and 42.21, which explained 8.4%-73.1% of the phenotypic variation. 【Conclusion】 A total of 32 QTLs were detected for 14 character of fructification. Fsc and Fws were found to be expressed consistently under four cropping seasons in a greenhouse cultivation environment. The tight linkage markers (SSR02697, SSR19256, SSR15818, SSR06003, SSR00116, SSR05321, SSR00004, SSR02309) can be used in gene fine mapping in cucumber.

Key words: cucumber(Cucumis sativus L.), fruit-associated traits, quantitative trait locus (QTL), recombinant inbred lines (RILs) , SSR marker

[1]Kennard W C, Havey M J. Quantitative trait analysis of fruit quality in cucumber, QTL detection, confirmation, and comparison with mating-design variation. Theoretical and Applied Genetics, 1995, 91: 53-61.

[2]Serquen F C, Bacher J, Staub J E. Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (Cucumis sativas L.) using random amplified polymorphic DNA makers. Molecular Breeding, 1997, 3(4): 257-268.

[3]Dijkuizen A, Staub J E. QTL conditioning yield and fruit quality traits in cucumber (Cucumis sativus L.): Effects of environment and genetic background. Journal of New Seeds, 2002, 4: 1-30.

[4]Fazio G, Chung S M, Staub J E. Comparative analysis of response to phenotypic and marker-assisted selection for multiple ateral branching in cucumber (Cucumis sativus L. ). Theoretical and Applied Genetics, 2003, 107(5): 875-883.

[5]李效尊. 黄瓜重要性状的QTL定位与分析[D]. 上海: 上海交通大学, 2007.

Li X Z. QTL Mapping and analysis of important traits in cucumber (Ccucumis sativus L.) [D]. Shanghai: Shanghaijiaotong University, 2007. (in Chinese)

[6]陈青君, 张海英, 王永健, 李婉钰, 张 峰, 毛爱军, 程继鸿, 陈明远. 温室黄瓜产量相关农艺性状QTLs的定位. 中国农业科学, 2010, 43(1): 112-122.

Chen Q J, Zhang H Y, Wang Y J, Li W Y, Zhang F, Mao A J, Cheng J H, Chen M Y. Mapping and analyzing QTLs of yield-associated agronomic traits of greenhouse cucumbers. Scientia Agricultura Sinica, 2010, 43(1): 112-122. (in Chinese)

[7]程周超,顾兴芳,张圣平,苗晗,张若纬,刘苗苗,杨双娟. 黄瓜瓜长性状的QTL定位分析. 中国蔬菜, 2010(12): 20-25.

Cheng Z C, Gu X F, Zhang S P, Miao H, Zhang S P, Zhang R W, Liu M M, Yang S J. QTL Analysis for fruit length of cucumber. China Vegetables, 2010(12): 20-25. (in Chinese)

[8]Li Y, Yang L M, Pathak M, Li D W, He X M, Weng Y Q. Fine genetic mapping of cp: a recessive gene for compact (dwarf)plant architecture in cucumber, Cucumis sativus L. Theoretical and Applied Genetics, 2011, 123: 973-983.

[9]孙洪涛, 秦智伟, 周秀艳, 武  涛, 潘丹丹. 黄瓜果实横径的遗传分析及分子标记中国农学通报,2010, 26(20): 38-42.

Sun H T, Qin Z W, Zhou X Y, Wu T, Pan D D. genetic analysis and molecular localization of the fruit diameter in cucumber. Chinese Agricultural Science Bulletin, 2010, 26 (20): 38-42. (in Chinese)

[10]Li X Z, Pan J S, Wang G, Tian L B,Si L T, Wu A Z, Cai R. Localization of genes for lateral branch and female sex expression and construction of a molecular linkage map in cucumber (Cucumis sativus L.) with RAPD markers. Progress in Natural Science, 2005, 15(2): 36-41.

[11]Pan J S, Wang G, Li X Z, He H L, Wu A Z, Cai R. Construction of a genetic map with SRAP markers and localization of the gene responsible for the first-flower-node trait in cucumber (Cucumis sativus L.). Progress in Natural Science, 2005, 15: 407-413.

[12]Heang D, Sato H, Sassa H, Koba T. Detection of two QTLs for fruit weight in cucumber (Cucumis sativus. L). Proc IXth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae. INRA, Avignon, France, 2008, 511-514.

[13]Yuan X J, Li X Z, Pan J S, Wang G, Jiang S, Li X H, Deng S L, He H L, Si M X, Lai L, Wu A Z, Zhu L H, Cai R. Genetic linkage map construction and location of QTLs for fruit-related traits in cucumber. Plant Breeding, 2008a, 127: 180-188.

[14]Yuan X J, Pan J S, Cai R, Guan Y, Liu L Z, Zhang W W, Li Z, He H L, Zhang C, Si L T, Zhu L H. Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica, 2008b, 164: 473-491.

[15]王桂玲, 秦智伟, 周秀艳, 赵咫云.黄瓜果瘤的遗传及SSR 标记. 植物学通报, 2007, 24(2):168-172.

Wang G L, Qing Z W, Zhou X Y, Zhao Z Y. Genetic analysis and SSR markers of tuberculate trait in Cucumis sativus. Chinese Bulletin of Botany, 2007, 24(2): 168-172. (in Chinese)

[16]关  媛. 黄瓜果刺形成相关基因的定位与克隆[D]. 上海: 上海交通大学, 2008.

Guan Y. Mapping and cloning of related gene for spines formation in cucumber[D]. Shanghai: Shanghaijiaotong University, 2008.(in Chinese )

[17]Zhang W W, He H, Yuan G, Du H, Yuan L H, Li Z, Yao D Q, Pan J S, Cai R. Identification and mapping of molecular markers linked to the tuberculate fruit gene in the cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 2009, doi 10.1007/ s00122- 009- 1182-3.

[18]Wehner T C. Gene list 2005 for cucumber. Cucurbit Genetics Cooperative Report, 2005, 28/29: 105-141.

[19]Miao H, Zhang S P, Wang X W, Zhang Z H, Li M, Mu S Q, Cheng   Z C, Zhang R W, Huang S W, Xie B Y, Fang Z Y, Zhang Z X, Weng  Y Q, Gu X F. A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica, 2011, doi: 10.1007/ S10681-011-0410-5.

[20]李锡香, 朱德蔚, 杜永臣, 沈  镝. 黄瓜种质资源描述规范和数据标准. 北京: 中国农业出版社, 2005.

Li X X, Zhu D W, Du Y C, Shen D. Descriptors and Data Standard for Cucumber ( Cucumis sativus L.). Beijing: China Agriculture Press, 2005.(in Chinese)

[21]van Ooijen J W. Accuracy of mapping quantitative trait loci in autogamous species. Theoretical and Applied Genetics, 1992, 84: 803-811.

[22]Clark R M, Wagler T N, Quijada P, Doebley J. A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nature Genetics, 2006, 38(5): 594-597.

[23]Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309 (5735): 741-745.

[24]王志坤, 秦智伟, 周秀艳. 黄瓜果实成熟衰老过程中几种物质的变化.中国蔬菜, 2010(12): 41-45.

Wang Z K, Qin Z W, Zhou X Y. Changes of several substances during ripening and senescence process of cucumber fruit. China Vegetables, 2010(12): 41-45. (in Chinese )

[25]庞金安, 马德华, 霍振荣, 李淑菊. 成熟度和后熟对黄瓜种子发育及果实内发芽的影响//中国园艺学会第四届青年学术讨论会园艺学进展(第4辑). 哈尔滨: 哈尔滨工程大学出版社, 2000.

Pang J A, Ma D H, Huo Z R, Li S J. Effect of growth time and after repining on maturation and germination-in-fruit of cucumber seeds// Chinese Society for Horticultural Science, Proceedings of the Fourth Symposium on Horticulture (4). Harbin: Harbin Engineering University Press, 2000. (in Chinese )
[1] ZhiJun XU,Sheng ZHAO,Lei XU,XiaoWen HU,DongSheng AN,Yang LIU. Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea) [J]. Scientia Agricultura Sinica, 2020, 53(4): 695-706.
[2] LIU XiQiang, ZHANG Han, WANG XueMin, YI DengXia, WANG Zan. Association Mapping of Fall Dormancy with SSR Markers in Alfalfa (Medicago sativa L.) [J]. Scientia Agricultura Sinica, 2018, 51(2): 226-232.
[3] YANG ZiBo, WANG AnBang, LENG SuFeng, GU ZhengZhong, ZHOU YangMei. Genetic Analysis of the Novel High-Yielding Wheat Cultivar Huaimai33 [J]. Scientia Agricultura Sinica, 2018, 51(17): 3237-3248.
[4] XUE YanTao, LU Ping, QIAO ZhiJun, LIU MinXuan, WANG RuiYun. Genetic Diversity and Genetic Relationship of Broomcorn Millet (Panicum miliaceum L.) Germplasm Based on SSR Markers [J]. Scientia Agricultura Sinica, 2018, 51(15): 2846-2859.
[5] LIU WenPing, Lü Wei, LI DongHua, REN GuoXiang, ZHANG YanXin, WEN Fei, HAN JunMei, ZHANG XiuRong. Drought Resistance of Sesame Germplasm Resources and Association Analysis at Adult Stage [J]. Scientia Agricultura Sinica, 2017, 50(4): 625-639.
[6] LIU Huan, ZHANG XinQuan, MA Xiao, ZHANG RuiZhen, HE GuangWu, PAN Ling, JIN MengYa. Construction of EST-SSR Fingerprinting Based on Fluorescence Detection Technology for Italian Ryegrass [J]. Scientia Agricultura Sinica, 2017, 50(3): 437-450.
[7] WEN Xin, DENG Shu, ZHANG ChunFen, HOU LiYuan, SHI JiangPeng, NIE YuanJun, XIAO Rong, QIN YongJun, CAO QiuFen. Regeneration of New Germplasms Using Anther Culture of Apple Cultivar ‘Gala’ [J]. Scientia Agricultura Sinica, 2017, 50(14): 2793-2806.
[8] ZHANG Chang-quan, ZHAO Dong-sheng, LI Qian-feng, GU Ming-hong, LIU Qiao-quan. Progresses in Research on Cloning and Functional Analysis of Key Genes Involving in Rice Grain Quality [J]. Scientia Agricultura Sinica, 2016, 49(22): 4267-4283.
[9] LIAN Shuai, LU Ping, QIAO Zhi-jun, ZHANG Qi, ZHANG Qian, LIU Min-xuan, WANG Rui-yun. Genetic Diversity in Broomcorn Millet (Panicum miliaceum L.) from China and Abroad by Using SSR Markers [J]. Scientia Agricultura Sinica, 2016, 49(17): 3264-3275.
[10] LIU Xiu-yun, LI Hui, LIU Zhi-guo, ZHAO Jin, LIU Meng-jun. Genetic Diversity and Structure of 255 Cultivars of Ziziphus jujuba Mill. [J]. Scientia Agricultura Sinica, 2016, 49(14): 2772-2791.
[11] HU Zhen-bang, GAO Yun-lai, QI Zhao-ming, JIANG Hong-wei, LIU Chun-yan, XIN Da-wei, HU Guo-hua, PAN Xiao-cheng, CHEN Qing-shan. Software Development of -ID Analysis for Crop Molecular Identity Construction [J]. Scientia Agricultura Sinica, 2016, 49(12): 2255-2266.
[12] LI Zong-yan1, QIN Yan-ling1, MENG Jin-fang2, TANG Dai1, WANG Jin1. Study on the Origin of Tree Peony Cultivars from Southwest China Based on ISSR Technology [J]. Scientia Agricultura Sinica, 2015, 48(5): 931-940.
[13] XING Jun, CHANG Hui-lin, WANG Jing-guo, LIU Hua-long, SUN Jian, ZHENG Hong-liang, ZHAO Hong-wei, ZOU De-tang. QTL Analysis of Na+ and K+ Concentrations in japonica Rice   Under Salt and Alkaline Stress [J]. Scientia Agricultura Sinica, 2015, 48(3): 604-612.
[14] WANG Ling, ZUO Shi-min, ZHANG Ya-fang, CHEN Zong-xiang, HUANG Shi-wen, PAN Xue-biao. SSR Analysis of Population Genetic Structure of Rice Sheath Blight Causing Agent Rhizoctonia solani AG1-IA Collected from Eight Provinces (Autonomous Region) in Southern China [J]. Scientia Agricultura Sinica, 2015, 48(13): 2538-2548.
[15] LIU Juan, LIAO Kang, ZHAO Shi-rong, CAO Qian, SUN Qi, LIU Huan. The Core Collection Construction of Xinjiang Wild Apricot Based on ISSR Molecular Markers [J]. Scientia Agricultura Sinica, 2015, 48(10): 2017-2028.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!