Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (19): 3997-4006.doi: 10.3864/j.issn.0578-1752.2013.19.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

The Possible Effects of Global Warming on Cropping Systems in China Ⅸ. The Risk of High and Low Temperature Disasters for Single and Double Rice and Its Impacts on Rice Yield in the Middle-Lower Yangtze Plain

 LI  Yong-12, YANG  Xiao-Guang-2, YE  Qing-23, CHEN  Fu-4   

  1. 1.Guizhou Institute of Mountainous Environment and Climate/Guizhou Key Laboratory of Mountainous Climate and Resources, Guiyang 550002
    2.College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193
    3.Forestry Institute of Jiangxi Agricultural University, Nanchang 330043
    4.College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193
  • Received:2013-02-04 Online:2013-10-01 Published:2013-06-03

Abstract: 【Objective】 In this study, the change of safety planting northern limits of double rice cropping systems and the areas of sensitive regions caused by climate change during 1981 to 2010 and 1951 to 1980 were analyzed in the Middle-Lower Yangtze Plain. Also the risk of high and low temperature hazards during the growing season of single rice and double rice and its impacts on rice yields in the sensitive planting regions for rice safety planting (SPR) were compared and discussed.【Method】SPR were determined based on the indices of regionalization for cropping systems and agro-meteorology methods. Then according to the indices of high temperature and low temperature hazards for rice, the impacts of these two disasters on rice yields in SPR were analyzed by Oryza2000 model.【Result】Compared with 1951 to 1980, the areas of SPR in the Middle-Lower Yangtze Plain increased by 11.5×104 km2. The high and low temperature disasters with the largest frequency for early, late, and single rice are low temperature disaster during seedling bed period, low temperature disaster during filling and ripening period, and high temperature disaster during booting and heading period, respectively. However, the disasters with the greatest impacts on crop yield for early, late, and single rice are low temperature disaster during seedling bed period, low temperature disaster during booting and heading period, and high temperature disaster during filling and ripening period. The frequency of mostly high temperature disaster during different growing periods for early, late and single rice increased, and the frequency of mostly low temperature disaster decreased.【Conclusion】Under the background of climate warming, the obvious changes for safety planting area of double rice cropping systems in the Middle-Lower Yangtze Plain were found. There were significant differences for the risks of high and low temperature disaster and its impacts on rice yields in the areas of SPR during the growing season of single and double rice.

Key words: the Middle-Lower Yangtze Plain , climate change , rice , disaster risk , yield

[1]程勇翔, 王秀珍, 郭建平, 赵艳霞, 黄敬峰. 中国水稻生产的时空动态分析. 中国农业科学, 2012, 45(17): 3473-3485.

Cheng Y X, Wang X Z, Guo J P, Zhao Y X, Huang J F. The Temporal- spatial dynamic analysis of China rice production. Scientia Agricultura Sinica, 2012, 45(17): 3473-3485. (in Chinese)

[2]章秀福, 王丹英, 方福平, 曾衍坤, 廖西元. 中国粮食安全和水稻生产. 农业现代化研究, 2005, 26(2): 85-88.

Zhang X F, Wang D Y, Fang F P, Zhen Y K, Liao X Y. Food safety and rice production in China. Research of Agricultural Modernization, 2005, 26(2): 85-88. (in Chinese)

[3]唐华俊. 中国农业区域结构优化研究//农业资源利用与区域可持续发展研究. 北京: 中国农业科技出版社, 2000.

Tang H J. Agricultural regional structure optimization research in China//Agricultural Resources and Regional Sustainable Development Research. Beijing: China’s Agricultural Science and Technology Press, 2000. (in Chinese)

[4]尹昌斌, 陈印军, 杨瑞珍. 长江中下游地区稻田改制的倾向与动力——来自农户调查的实证分析. 中国农业资源与区划, 2003, 24(2): 34-37.

Ying C B, Chen Y J, Yang R Z. Trend and motivity on the changing system of paddyfield planting in the middle-down Yangtze River Valley. China's Agricultural Resources and Division, 2003, 24(2): 34-37. (in Chinese)

[5]Zhai P M, Zhang X B, Wan H, Pan X H. Trends in total precipitation and frequency of daily precipitation extremes over China. Journal of Climate, 2005, 18(7): 1096-1108.

[6]Su B D, Jiang T, Jin W B. Recent trends in observed temperature and precipitation extremes in the Yangtze River basin, China. Theoretical and Applied Climatology, 2006, 83(1): 139-151.

[7]杨晓光, 刘志娟, 陈阜. 全球气候变暖对中国种植制度可能影响Ⅰ气候变暖对中国种植制度北界和粮食产量可能影响的分析. 中国农业科学, 2010, 43(2): 329-336.

Yang X G, Liu Z J, Chen F. The possible effects of global warming on cropping systems  in China (Ⅰ) The possible effects of climatic warming on Northern limits of cropping systems and crop yields in China. Scientia Agricultura Sinica, 2010, 43(2): 329-336. (in Chinese)

[8]宋艳玲, 刘波, 钟海玲. 气候变暖对我国南方水稻可种植区的影响. 气候变化研究进展, 2011, 7(4): 259-264.

Song Y L, Liu B, Zhong H L. Impact of global warming on the rice cultivable area in Southern China in 1961-2009. Advances in Climate Change Research, 2011, 7(4): 259-264. (in Chinese)

[9]冯明, 陈正洪, 刘可群, 吴义城, 毛飞, 黄永平. 湖北省主要农业气象灾害变化分析. 中国农业气象, 2006, 27(4): 343-348.

Feng M, Chen Z H, Liu K Q, Wu Y C, Mao F, Huang Y P. Analysis on variation of main agrometeorological disasters in Hubei Province. Chinese Journal of Agrometeorology, 2006, 27(4): 343-348. (in Chinese)

[10]帅细强, 王石立, 马玉平, 李迎春, 谢佰承. 基于ORYZA2000模型的湘赣双季稻气候生产潜力. 中国农业气象, 2009, 30(4): 575-581.

Suai X Q, Wang S L, Ma Y P, Li Y C, Xie B C. Studies on potential climate productivity of double rice in Hunan and Jiangxi Provinces based on ORYZA 2000 model. Chinese Journal of Agrometeorology, 2009, 30(4): 575-581. (in Chinese)

[11]葛道阔, 金之庆, 石春林, 高亮之. 气候变化对中国南方水稻生产的阶段性影响及适应性对策. 江苏农业学报, 2002, 18(1): 1-8.

Ge D K, Jin Z Q, Shi C L, Gao L Z. Climate change on China southern rice production stage effects and adaptive countermeasures. Jiangsu Journal of Agricultural Sciences, 2002, 18(1): 1-8. (in Chinese)

[12]石全红, 刘建刚, 陈阜, 褚庆全. 长江中下游地区水稻产量差及分布特征研究. 中国农业大学学报, 2012, 7(1): 33-39.

Shi Q H, Liu J G, Chen F, Chu Q Q. Researches on rice yield gaps and their distribution characteristicsin middle and lower area of Yangtze River Valley. Journal of China Agricultural University, 2012, 7(1): 33-39. (in Chinese)

[13]李祎君, 王春乙. 气候变化对我国农作物种植结构的影响. 气候变化研究进展, 2010, 6(2): 123-129.

Li W J, Wang C Y. Impacts of climate change on crop planting structure in China. Advances in Climate Change Research, 2010, 6(2): 123-129. (in Chinese)

[14]王馥棠. 近十年来我国气候变暖影响研究的若干进展. 应用气象学报, 2002, 13(6): 755-766.

Wang F T. Advances in climate warming impact research in China in recent ten years. Journal of Applied Meteorological Science, 2002, 13(6): 755-766. (in Chinese)

[15]高素华, 王培娟, 万素琴. 长江中下游高温热害及对水稻的影响. 北京: 气象出版社, 2009.

Gao S H, Wang P J, Wang S Q. High Temperature Thermal Damage of the Middle and Lower Yangtze River and the Influence of Rice. Beijing: China Meteorological Press, 2009. (in Chinese)

[16]刘玲, 沙奕卓, 白月明. 中国主要农业气象灾害区域分布与减灾对策. 自然灾害学报, 2003, 12(2): 92-97.

Liu L, Sha Y Z, Bai Y M. Regional distribution of main agrometeorological disasters and disaster mitigation strategies in China. Journal of Natural Disasters, 2003, 12(2): 92-97. (in Chinese)

[17]Jin Z, Ge D, Chen H. Assessing impacts of climate change on rice production: strategies for adaptation in Southern China. Climate Change and Rice, 1995: 303-313.

[18]陈辉, 施能, 王永波. 长江中下游气候的长期变化及基本态特征. 气象科学, 2001, 21(1): 44-53.

Chen H, Shi N, Wang Y B. Climate secular change and base state over the mid-lower reaches of Yangze river. Scientia Meteorological Sinica, 2001, 21(1): 44-53. (in Chinese)

[19]Peng S, Huang J, Sheehy J E. Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(27): 9971.

[20]Yao F M, Xu Y L, Lin E D, Yokozawa M, Zhang J H. Assessing the impacts of climate change on rice yields in the main rice areas of China. Climate Change, 2007, 80(3/4): 395-409.

[21]Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Friedlingstein P, Liu C, Tan K, Yu Y, Zhang T, Fang J. The impacts of climate change on water resources and agriculture in China. Nature, 2010, 467: 43-51.

[22]Lobell D B, Schlenker W, Costa-Roberts J. Climate trends and global crop production since 1980. Science, 1980, 333: 616-620.

[23]刘巽浩, 韩湘玲. 中国的多熟种植. 北京: 北京农业大学出版社, 1987.

Liu X H, Han X L. China's Multiple Cropping System. Beijing: Beijing Agricultural University Press, 1987. (in Chinese)

[24]高亮之, 李林. 水稻气象生态. 北京: 农业出版社, 1992.

Gao L Z, Li L. Rice Meteorological Ecological. Beijing: China Agriculture Press, 1992. (in Chinese)

[25]李林, 沙国栋, 陆景淮. 水稻灌浆期温光因子对稻米品质的影响. 中国农业气象, 1989, 10(3): 33-38.

Li L, Sha G D, Lu J H. Rice grouting period temperature factors on the influence of the rice quality. Chinese Journal of Agrometeorology, 1989, 10(3): 33-38. (in Chinese)

[26]李守华, 田小海, 黄永平, 刘爱英. 江汉平原近50年中稻花期危害高温发生的初步分析. 中国农业气象, 2007, 28(1): 5-8.

Li S H, Tian X H, Huang Y P, Liu A Y. Preliminary analysis of high temperature harm at middle season rice florescence on Jianghan Plain in last 50 years. Chinese Journal of Agrometeorology, 2007, 28(1): 5-8. (in Chinese)

[27]万素琴, 陈晨, 刘志雄, 周月华, 邓环, 高素华. 气候变化背景下湖北省水稻高温热害时空分布. 中国农业气象, 2009, 30(S2): 316-319.

Wan S Q, Chen C, Liu Z X, Zhou Y H, Deng H, Gao S H. Space-time distribution of heat injury on rice in Hubei province under climate change. Chinese Journal of Agrometeorology, 2009, 30(S2): 316-319. (in Chinese)

[28]De Datta S K. Principles and Practices of Rice Production. Philippines: International Rice Research Institute, 1981.

[29]Yoshida S. Tropical climate and its influence on rice//Periodicity, Productivity and Stability. Philippines: International Rice Research Institute, 1978.

[30]Yoshida S. Fundamentals of Rice Crop Science. Philippines: International Rice Research Institute, 1981.

[31]冯德花, 蒋跃林, 杨太明, 陈金华. 沿淮地区高温热害分布特征及其对水稻产量的影响. 安徽农业科学, 2011, 39(16): 9680-9682.

Feng D H, Jiang Y L, Yang T M, Chen J H. Distribution characteristics of high temperature damage and its influence on the rice yield in the area along Huaihe River. Anhui Agricultural Sciences, 2011, 39(16): 9680-9682. (in Chinese)

[32]中国气象局. 寒露风等级标准. 北京: 气象出版社, 2008.

China Meteorological Administration. Cold Dew Wind Level Standard. Beijing: China Meteorological Press, 2008. (in Chinese)

[33]魏凤英. 现代气候统计诊断与预测技术. 北京: 气象出版社, 2007.

Wei F Y. Modern Climate Statistical Diagnosis and Prediction Technology. Beijing: China Meteorological Press, 2007. (in Chinese)

[34]Bouman B A M, van Keulen H, van Laar H H, Rabbingeb R. The ‘School of de Wit’ crop growth simulation models: a pedigree and historical overview. Agricultural Systems, 1996, 52(2/3): 171-198.

[35]Jamieson P D, Porter J R, Goudriaan J, Ritchie T, van Keulen H, Stol W. A comparison of the models AFRCWHEAT2, CERES-Wheat Sirius, SUCROS2 and SWHEAT with measurements from wheat grown under drought. Field Crops Research, 1998, 55(1/2): 23-44.

[36]Tang L, Zhu Y, Hannaway D, Meng Y, Liu L, Chen L, Cao W. RiceGrow: A rice growth and productivity model. NJAS-Wageningen Journal of Life Sciences, 2009, 57(1): 83-92.

[37]Van Ittersum M K, Leffelaar P A, Van Keulen H, Kropff M J, Bastiaans L, Goudriaan J. On approaches and applications of the Wageningen crop models. European Journal of Agronomy, 2003, 18(3/4): 201-234.

[38]Bouman B. ORYZA2000: Modeling Lowland Rice. 1. Philippines: International Rice Research Institute, 2001.

[39]Bouman B A M, van Laar H H. Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agricultural Systems, 2006, 87(3): 249-273.

[40]Feng L, Bouman B, Tuong T P, Cabangon R J, Li Y L, Lu G A, Feng Y H. Exploring options to grow rice using less water in northern China using a modelling approach: I. Field experiments and model evaluation. Agricultural Water Management, 2007, 88(1): 1-13.

[41]Krishnan P, Swain D K, Chandra Bhaskar B, Nayak S K, Dash R N. Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agriculture, Ecosystems & Environment, 2007, 122(2): 233-242.

[42]Soundharajan B, Sudheer K P. Deficit irrigation management for rice using crop growth simulation model in an optimization framework. Paddy and Water Environment, 2009, 7(2): 135-149.

[43]Xue C Y, Yang X G, Bouman B A M, Deng W, Zhang Q P, Yan W X, Zhang T Y, Rouzi A, Wang H Q. Optimizing yield, water requirements, and water productivity of aerobic rice for the North China Plain. Irrigation Science, 2008, 26(6): 459-474.

[44]杨爱萍. 湖北水稻盛夏低温冷害变化特征及其影响[D]. 武汉: 华中农业大学, 2009.

Yang A P. Analysis on characteristics and impact of spatial and temporal changes for rice chilling injury in summer in Hubei Province[D]. Wuhan: Huazhong Agricultural University, 2009. (in Chinese)

[45]陈正洪. 湖北省60年代以来平均气温变化趋势初探. 长江流域资源与环境, 1998, 7(4): 52-57.

Chen Z H. On variation tendency of average temperature in Hubei province since the 1961’s. Resources and Environment in the Yangtze Basin, 1998, 7(4): 52-57. (in Chinese)

[46]李守华, 田小海, 黄永平, 刘爱英. 江汉平原近50年中稻花期危害高温发生的初步分析. 中国农业气象, 2007, 28(1): 5-8.

Li S H, Tian X H, Huang Y P, Liu A Y. Preliminary analysis of high temperature harm at middle-season rice florescence on Jianghan plain in last 50 years. Chinese Journal of Agrometeorology, 2007, 28(1):  5-8. (in Chinese)

[47]张倩. 长江中下游地区高温热害对水稻的影响评估[D]. 北京: 中国气象科学研究院, 2010.

Zhang Q. Study on the impact assessment of high temperature damage for rice in the lower and middle reaches of Yangtze river[D]. Beijing: Chinese Academy of Meteorological Sciences, 2010. (in Chinese)

[48]黄季焜, 王巧军, 陈庆根. 农业生产资源的合理配置研究: 水稻生产的投入产出分析. 中国水稻科学, 1995, 9(1): 39-44.

Huang J K, Wang Q J, Chen Q G. Agricultural production resources allocation: rice input and output analysis. Chinese Journal of Rice Science, 1995, 9(1): 39-44. (in Chinese)
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[4] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[5] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[6] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[7] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[8] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[9] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[10] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[11] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[12] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[13] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[14] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[15] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!