Scientia Agricultura Sinica ›› 2010, Vol. 43 ›› Issue (16): 3280-3287 .doi: 10.3864/j.issn.0578-1752.2010.16.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Isolation and Expression Analysis of a Drought-Induced Gene ZmBTF3b in Maize (Zea mays L.)

ZHANG Zhong-bao, ZHANG Deng-feng, LI Hui-yong, LIU Ying-hui, SHI Yun-su, SONG Yan-chun, WANG Tian-yu, LI Yu
  

  1. (中国农业科学院作物科学研究所)
  • Received:2010-02-09 Revised:2010-03-19 Online:2010-08-15 Published:2010-08-15
  • Contact: LI Yu,WANG Tian-yu

Abstract:

【Objective】 ZmBTF3b gene was cloned and used to analyze the expression profiles under abiotic stresses, providing a foundation for investigating mechanisms of molecular regulation in stress tolerance in maize. 【Method】 The promoter of ZmBTF3b was analyzed via bioinformatics. Transcriptional activation activity of ZmBTF3b was conducted using yeast one-hybrid system. Expression profiles of ZmBTF3b in different tissues of maize and in response to abiotic stresses were assayed via real-time quantitative PCR (qRT-PCR). 【Result】 The cloned ZmBTF3b gene encoded a putative transcription factor of 169 amino acids with a conserved NAC (nascent polypeptide-associated complex) domain. Transcriptional activity analysis showed that ZmBTF3b might be a functional transcription factor. Real-time quantitative PCR (qRT-PCR) analysis revealed that ZmBTF3b was highly expressed in silks, ears and immature embryos and was up-regulated under dehydration or PEG treatment while was down-regulated under cold, NaCl, ABA or SA. 【Conclusion】 ZmBTF3b might have the transcriptional activation activity and play an essential role in response to abiotic stresses.

Key words: Zea mays, ZmBTF3b, drought stress, expression profiles, transcriptional activation

[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[3] SHI Xi, NING LiHua, GE Min, WU Qi, ZHAO Han. Screening and Application of Biomarkers Related to Maize Nitrogen Status [J]. Scientia Agricultura Sinica, 2022, 55(3): 438-450.
[4] ZHANG JianJun, DANG Yi, ZHAO Gang, WANG Lei, FAN TingLu, LI ShangZhong. Influences of Mulching Periods and Nitrogen Application Rates on Maize Yield as well as Water and Nitrogen Use Efficiencies in Loess Plateau of Eastern Gansu Province [J]. Scientia Agricultura Sinica, 2022, 55(3): 479-490.
[5] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[6] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[7] XU Ke,FAN ZhiLong,YIN Wen,ZHAO Cai,YU AiZhong,HU FaLong,CHAI Qiang. Coupling Effects of N-fertilizer Postponing Application and Intercropping on Maize Photosynthetic Physiological Characteristics [J]. Scientia Agricultura Sinica, 2022, 55(21): 4131-4143.
[8] LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[9] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[10] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[11] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[12] HE KeWei,CHEN JiaFa,ZHOU ZiJian,WU JianYu. Fusarium verticillioides Resistant Maize Inbred Line Development Using Host-Induced Gene Silencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(9): 1835-1845.
[13] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[14] XUE RenFeng,FENG Ming,HUANG YuNing,Matthew BLAIR,Walter MESSIER,GE WeiDe. Effects of PvEG261 Gene on the Fusarium Wilt and Drought- Resistance in Common Bean [J]. Scientia Agricultura Sinica, 2021, 54(20): 4274-4285.
[15] LI Ming,LI YingChun,NIU XiaoGuang,MA Fen,WEI Na,HAO XingYu,DONG LiBing,GUO LiPing. Effects of Elevated Atmospheric CO2 Concentration and Nitrogen Fertilizer on the Yield of Summer Maize and Carbon and Nitrogen Metabolism After Flowering [J]. Scientia Agricultura Sinica, 2021, 54(17): 3647-3665.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!