Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (5): 1046-1055 .

• AGRICULTURAL ECONOMY & MANAGMENT • Previous Articles     Next Articles

Research on the Mechanism and Policies of Accumulation of Eco-capital of Green Agriculture

YAN Li-dong, DENG Yuan-jian, QU Zhi-guang
  

  1. (中南财经政法大学工商管理学院)
  • Received:2010-07-03 Revised:2010-09-17 Online:2011-03-01 Published:2011-03-01

Abstract:

【Objective】Combining with theory of green agriculture and theory of eco-capital, this paper discusses the mechanism and policies of accumulation of eco-capital of green agriculture. Its purpose is to promote virtuous running of eco-capital of green agriculture and sustainable development of green agriculture.【Method】Guidance under the theory of ecologic economics and agricultural ecological economics, this paper uses the method of technical analysis from the angle of multi-disciplinary subjects to explain the mechanism and policies of accumulating of eco-capital of green agriculture.【Result】Accumulation of eco-capital of green agriculture includes natural accumulation and artificial accumulation. Human factors play an important role in running of eco-capital of green agriculture. The path of accumulation of eco-capital of green agriculture includes agricultural economic ecologization and agricultural ecological economization. The mechanism of accumulation of eco-capital of green agriculture includes mechanism of ecology protection of green agriculture, mechanism of ecology restoration of green agriculture, mechanism of ecology compensation of green agriculture. The policies of accumulation of eco-capital of green agriculture include industrial policy, trade policy, technology policy, investment policy, management policy, and so on.【Conclusion】Accumulation of eco-capital of green agriculture is the base of running of eco-capital of green agriculture, and sound mechanism and policy is the guarantee of the accumulation of eco-capital of green agriculture.

Key words: eco-capital of green agriculture, accumulation, mechanism, policies

[1] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[2] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[3] YIN GuangKun,XIN Xia,ZHANG JinMei,CHEN XiaoLing,LIU YunXia,HE JuanJuan,HUANG XueQi,LU XinXiong. The Progress and Prospects of the Theoretical Research on the Safe Conservation of Germplasm Resources in Genebank [J]. Scientia Agricultura Sinica, 2022, 55(7): 1263-1270.
[4] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[5] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[6] MA Xiao,CHEN PengFei. Improvement of Row Detection Method Before Wheat Canopy Closure Using Multispectral Images of UAV Image [J]. Scientia Agricultura Sinica, 2022, 55(20): 3926-3938.
[7] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[8] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[9] WANG JinSong,DONG ErWei,LIU QiuXia,WU AiLian,WANG Yuan,WANG LiGe,JIAO XiaoYan. Effects of Row Spacing and Plant Density on Grain Yield and Quality of Grain-Feeding Sorghum [J]. Scientia Agricultura Sinica, 2022, 55(16): 3123-3133.
[10] ZHANG ChenXi, TIAN MingHui, YANG Shuo, DU JiaQi, HE TangQing, QIU YunPeng, ZHANG XueLin. Effects of Arbuscular Mycorrhizal Fungi Inoculant Diversity on Yield, Phosphorus and Potassium Uptake of Maize in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(15): 2899-2910.
[11] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[12] CHEN Yang,XU MengZe,WANG YuHong,BAI YouLu,LU YanLi,WANG Lei. Quantitative Study on Effective Accumulated Temperature and Dry Matter and Nitrogen Accumulation of Summer Maize Under Different Nitrogen Supply Levels [J]. Scientia Agricultura Sinica, 2022, 55(15): 2973-2987.
[13] ZHONG JiaLin,XU ZiYan,ZHANG YiYun,LI Jie,LIU XiaoYu,LI LianQing,PAN GenXing. Effects of Feedstock, Pyrolyzing Temperature and Biochar Components on the Growth of Chinese Cabbage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2775-2785.
[14] ZHANG HengDong,HUANG Min,ZOU YingBin,CHEN JiaNa,SHAN Shuang Lv. Amylose Accumulation Properties in the Grains of Noodle Rice [J]. Scientia Agricultura Sinica, 2021, 54(7): 1354-1364.
[15] DENG Fei,HE LianHua,CHEN Duo,TIAN QingLan,LI QiuPing,ZENG YuLing,LI Bo,CHEN Hong,WANG Li,REN WanJun. Characteristics of Nitrogen Absorption and Utilization of Machine- Transplanted Indica Hybrid Rice with Different Daily Yield Types [J]. Scientia Agricultura Sinica, 2021, 54(7): 1469-1481.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!