Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (10): 2060-2069.doi: 10.3864/j.issn.0578-1752.2011.10.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Fourier and Wavelet Analysis of Phosphorus Concentration Time Series in Baihe River in Miyun Reservoir Upstream Watershed

 ZHANG  Wei-Wei, LI  Hong, SUN  Dan-Feng, ZHOU  Lian-Di   

  1. 1.北京市农林科学院农业综合发展研究所,北京 100097
    2.中国农业大学资源与环境学院,北京 100193
  • Received:2010-06-23 Online:2011-05-15 Published:2010-10-11

Abstract: 【Objective】Analyzing the long-term water quality monitoring data to find temporal pattern of water quality signals over different temporal scales can assist us in understanding various processes affecting water quality temporal evolution at different scales and further ensuring watershed water quality security. 【Method】 Taking the phosphorus monitoring data of two sites S1 and S2 in the period 1986-2003 in Baihe River lying Miyun reservoir upstream watershed as a case, time domain analysis method, Fourier and Wavelet analysis were adopted to explore and compare the periodic patterns and temporal pattern characteristics of the two sites. 【Result】 The results showed that the Time Domain analysis method was not adopted due to no serial correlation and heteroscedasticity in each site series. The periodic patterns of two sites were discovered using Fourier analysis. The site S1 had a period of six years, while the site S2 had two periodic patterns of two years around and six years. The temporal pattern characteristics at different scales were obtained through wavelet analysis, which were at moderate scale for the site S1, while at moderate and small scales for the site S2. 【Conclusion】 The Fourier and wavelet analysis method can both be used in the study of surface water quality temporal change pattern, the first is a coarse method and the latter is a more detailed method for analyzing surface water quality temporal pattern characteristics.

Key words: Fourier, Wavelet analysis, phosphorus, water quality, Miyun reservoir

[1]Shrestha S, Kazama F. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling and Software, 2007, 22(4): 464-475.

[2]Zhou F, Liu Y, Guo H C. Application of multivariate statistical methods to the water quality assessment of the watercourses in the northwestern New Territories, Hong Kong. Environmental Monitoring and Assessment, 2007, 132(1-3): 1-13.

[3]Singh K P, Malik A, Mohan D, Sinha S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India): A case study. Water Research, 2004, 38: 3980-3992.

[4]周 丰, 郭怀成, 黄 凯, 郁亚娟, 郝泽嘉. 基于多元统计方法的河流水质空间分析. 水科学进展, 2007, 18(4): 544-551.

Zhou F, Guo H C, Huang K, Yu Y J, Hao Z J. Multivariate statistical technique for spatial variation in river water quality. Advances in Water Science, 2007, 18(4): 544-551. (in Chinese)

[5]Worrall F, Burt T P. Time series analysis of long-term river dissolved organic carbon records. Hydrological Processes, 2004, 18(5): 893-911.

[6]Ahmad S, Khan I H, Parida B P. Performance of stochastic approaches for forecasting river water quality. Water Research, 2001, 35(18): 4261-4266.

[7]Mohammadi K, Eslami H R, Kahawita R. Parameter estimation of an ARMA model for river flow forecasting using goal programming. Journal of Hydrology, 2006, 331: 293-299.

[8]Koutroumanidis T, Sylaios G, Zafeiriou E, Tsihrintzis V A. Genetic modeling for the optimal forecasting of hydrologic time-series: Application in Nestos River. Journal of Hydrology, 2009, 368: 156-164.

[9]Kang S J, Lin H. Wavelet analysis of hydrological and water quality signals in an agricultural watershed. Journal of Hydrology, 2007, 338: 1-14.

[10]Gaucherel C. Use of wavelet transform for temporal characterization of remote watersheds. Journal of Hydrology, 2002, 269: 101-121.

[11]Anctil F, Coulibaly P. Wavelet analysis of the interannual variability in southern Quebec streamflow. Journal of Climate, 2004, 17: 163-173.

[12]Lafreniere M, Sharp M. Wavelet analysis of inter-annual variability in the runoff regimes of glacial and nival stream catchments, Bow Lake, Alberta. Hydrological Processes, 2003, 14: 1093-1118.

[13]张 强, 陈桂亚, 许崇育, 许有鹏, 刘春玲, 姜 彤. 长江流域水沙周期特征及可能影响原因. 水科学进展, 2009, 20(1): 80-85.

Zhang Q, Chen G Y, Xu C Y, Xu Y P, Liu C L, Jiang T. Periodic characters of sediment load and runoff changes in the Yangtze River basin in the past 40 years, China. Advances in Water Science, 2009, 20(1): 80-85. (in Chinese)

[14]郭文献, 夏自强, 王鸿翔, 张运鑫. 近50年来长江宜昌站水温变化的多尺度分析. 水利学报, 2008, 39(11): 1197-1230.

Guo W X, Xia Z Q, Wang H X, Zhang Y X. Multiple-scale analysis on water temperature variation of Yichang Hydrological Station in recent 50 years. Journal of Hydraulic Engineering, 2008, 39(11): 1197-1230. (in Chinese)

[15]张微微, 孙丹峰, 李 红, 周连第. 密云水库所处流域1980-2003年地表水质风险评价. 环境科学, 2010, 31(7): 1483-1491.

Zhang W W, Sun D F, Li H, Zhou L D. Risk assessment on the surface water quality in Miyun Reservoir watershed, Beijing in the period 1980-2003. Environmental Science, 2010, 31(7): 1483-1491. (in Chinese)

[16]王晓燕, 王一峋, 蔡新广, 许 谦, 李廷芳. 北京密云水库流域非点源污染现状研究. 环境科学与技术, 2002, 25(4): 1-3.

Wang X Y, Wang Y X, Cai X G, Xu Q, Li T F. Investigation of non-point source pollution in the Miyun Reservoir watershed of Beijing. Environmental Science and Technology, 2002, 25(4): 1-3.(in Chinese)

[17]黄生斌, 刘宝元, 刘晓霞, 孙 江. 密云水库流域农业非点源污染基本特征分析. 农业环境科学学报, 2007, 26(4): 1219-1223.

Huang S B, Liu B Y, Liu X X, Sun J. Characteristics of agricultural non-pointed source pollution in the watershed of Miyun Reservoir. Journal of Agro-Environment Science, 2007, 26(4): 1219-1223. (in Chinese)

[18]黄生斌, 叶芝菡, 刘宝元. 密云水库流域农业非点源污染研究概 述. 中国生态农业学报, 2008, 16(5): 1311-1316.

Huang S B, Ye Z H, Liu B Y. Review on non-point source pollution in Miyun Reservoir. Chinese Journal of Eco-Agriculture, 2008, 16(5): 1311-1316. (in Chinese)

[19]王晓燕, 王晓峰, 汪清平, 王振刚, 蔡新广. 北京密云水库小流域非点源污染负荷估算. 地理科学, 2004, 24(2): 227-231.

Wang X Y, Wang X F, Wang Q P, Wang Z G, Cai X G. Loss of non-point source pollutants from Shixia small watershed, Miyun Reservoir, Beijing. Scientia Geographica Sinica, 2004, 24(2): 227-231. (in Chinese)

[20]Wang X Y, Wang X X, Li T F, He W, Hu Q J, Zhang H F. Characteristics of non-point source pollution in the watershed of Miyun Reservoir, Beijing, China. Chinese Journal of Geochemistry, 2002, 21(1): 90-95.

[21]Si B C. Spatial scaling analyses of soil physical properties: A review of spectral and wavelet methods. Vadose Zone Journal, 2008, 7: 547-562.

[22]Torrence C, Compo G P. A practical guide to wavelet analysis. Bulletin of American Meteorological Society, 1998, 79: 61-78.

[23]Grinsted A, Moore J C, Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 2004, 11: 561-566.

[24]Ghil M, Allen M R, Dettinger M D, Ide K, Kondrashov D, Mann M E, Robertson A W, Saunders A, Tian Y, Varadi F, Yiou P. Advanced spectral methods for climate time series. Review of Geophysics, 2002, 40(1): 1-41.

[25]Labat D, Ronchail J, Guyot J L. Recent advances in wavelet analysis: Part 2. Amazon, Parana, Orinoco and Congo discharges time scale variability. Journal of Hydrology, 2005, 314: 289-311.
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[3] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[4] WANG Miao,ZHANG Yu,LI RuiQiang,XIN XiaoPing,ZHU XiaoYu,CAO Juan,ZHOU ZhongYi,YAN RuiRui. Effects of Grazing Disturbance on the Stoichiometry of Nitrogen and Phosphorus in Plant Organs of Leymus chinensis Meadow Steppe [J]. Scientia Agricultura Sinica, 2022, 55(7): 1371-1384.
[5] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[6] QIN ZhenHan,WANG Qiong,ZHANG NaiYu,JIN YuWen,ZHANG ShuXiang. Characteristics of Phosphorus Fractions and Its Response to Soil Chemical Properties Under the Threshold Region of Olsen P in Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(22): 4419-4432.
[7] DONG ZeKuan,ZHANG ShuiQin,LI YanTing,GAO Qiang,ZHAO BingQiang,YUAN Liang. Effects of Chelating Agent on Dissolution, Fixation and Fertisphere Transformation of Diammonium Phosphate [J]. Scientia Agricultura Sinica, 2022, 55(21): 4225-4236.
[8] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[9] ZHANG ChenXi, TIAN MingHui, YANG Shuo, DU JiaQi, HE TangQing, QIU YunPeng, ZHANG XueLin. Effects of Arbuscular Mycorrhizal Fungi Inoculant Diversity on Yield, Phosphorus and Potassium Uptake of Maize in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(15): 2899-2910.
[10] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[11] LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122.
[12] LI ShuaiShuai, GUO JunJie, LIU WenBo, HAN ChunLong, JIA HaiFei, LING Ning, GUO ShiWei. Influence of Typical Rotation Systems on Soil Phosphorus Availability Under Different Fertilization Strategies [J]. Scientia Agricultura Sinica, 2022, 55(1): 96-110.
[13] JIN YuTing,LIU YunFeng,HU HongXiang,MU Jing,GAO MengYao,LI XianFan,XUE ZhongJun,GONG JingJing. Effects of Continuous Straw Returning with Chemical Fertilizer on Annual Runoff Loss of Nitrogen and Phosphorus in Rice-Rape Rotation [J]. Scientia Agricultura Sinica, 2021, 54(9): 1937-1951.
[14] YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198.
[15] XIANG XiaoLing,CHEN SongHe,YANG HongKun,YANG YongHeng,FAN GaoQiong. Effects of Straw Mulching and Phosphorus Application on Wheat Yield, Phosphorus Absorption and Utilization in Hilly Dryland [J]. Scientia Agricultura Sinica, 2021, 54(24): 5194-5205.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!