Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (6): 1157-1166.doi: 10.3864/j.issn.0578-1752.2017.06.016

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

De novo Transcriptome Assembly for Apis cerana cerana Larval Gut and Identification of SSR Molecular Markers

XU XiJian1, GUO Rui1, LUO Qun2, XIONG CuiLing1, LIANG Qin1, ZHANG ChuanLian2, ZHENG YanZhen1, ZHANG ZhaoNan1, HUANG ZhiJian1, Zhang Lu1, LI WenDong1, CHEN DaFu1   

  1. 1College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002; 2Apiculture Institute of Jiangxi Province, Nanchang 330201
  • Received:2016-09-29 Online:2017-03-16 Published:2017-03-16

Abstract: 【Objective】 The objective of this study is to de novo assemble a reference transcriptome for Apis cerana cerana larval gut, perform gene function and pathway annotation for this transcriptome, and to identify specific SSR molecular markers for A. c. cerana larvae. 【Method】 3-day-old instar A. c. cerana larvae were fed with the purified Ascosphaera apis spores, the guts of 4-, 5- or 6-day-old honeybee larvae were sampled and used as sequencing material for RNA seq. After filtration, clean reads were obtained, and unigenes were assembled using Trinity software. BLASTX tool (E-value<10−5) was used to search the unigenes against NCBI Nr, Swiss-Prot protein, KOG as well as KEGG databases to perform gene function and pathway annotation. MISA software was used to search microsatellite markers in the larval gut’s transcriptome. The specific primers of all SSRs were designed using Primer Premier 5 program and several pairs were used to amplify SSR loci in A. c. cerana larvae samples from 3 different regions (Beijing, Xingcheng, and Chengdu) in China by method of PCR. 【Result】 In this study, RNA seq produced 35 670 000 high quality reads, which were assembled into 43 557 unigenes with a mean length of 898 nt. 18 225 unigenes were annotated in the public protein databases. a total of 11 442 unigenes had a KOG classification and they distributed in 25 KOG categories, among them, RNA processing and modification was the largest group (1 249). 9 679 unigenes could be classified into three gene ontology (GO) categories, in which the mostly enriched ones were cellular process (4 201 unigenes), cell (2 900 unigenes) and binding    (4 935 unigenes). 4 517 unigenes were annotated to 216 KEGG pathways, among them, ribosome (385 unigenes) was the largest. Finally, 13 448 SSRs were found in 7 763 unigenes, and 6 out 20 SSR loci could be successfully amplified in A. c. cerana larvae samples from 3 different regions in China using PCR. 【Conclusion】 This study assembled and annotated a reference transcriptome for A. c. cerana larval gut, which will provide a key information not only to studies on eastern honeybee and its larvae such as molecular biology and omics, but also to improve and validate the genome of A. cerana. SSR markers developed here could be applied to future investigation of A. c. cerana including gene map construction, genetic diversity analysis as well as gene location. Meanwhile, this study suggested that developing molecular markers using transcriptome data of non-model organism is a rapid and efficient method.

Key words: RNA seq; de novo assembly, Apis cerana cerana, unigenes, SSR

[1]    Zayed A, Robinson G E. Understanding the relationship between brain gene expression and social behavior: lessons from the honey bee. Annual Review of Genetics, 2012, 46: 591-615.
[2]    Begna D, Han B, Feng M, Fang Y, Li J K. Differential expressions of nuclear proteomes between honeybee (Apis mellifera L.) queen and worker larvae: a deep insight into caste pathway decisions. Journal of Proteome Research, 2012, 11(2): 1317-1329.
[3]    Foret S, Kucharski R, Pellegrini M, Feng S, Jacobsen S E, Robinson G E, Maleszka R. DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(13): 4968-4973.
[4]    Galizia G E D, Giu M. Honeybee Neurobiology and Behavior: A Tribute to Randolf Menzel. Springer, 2012: 521.
[5]    Weinstock G M, Robinson G E, Gibbs R A, Weinstock G M. Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 2006, 443(7114): 931-949.
[6]    Peng Y S, Nasr M E, Locke S J. Geographical races of Apis cerana Fabricius in China and their distribution. review of recent Chinese publications and a preliminary statistical analysis. Apidologie, 1989, 20(1): 9-20.
[7]    Lin Z, Page P, Li L, Qin Y, Zhang Y, Hu F, Neumann P, Zheng H, Dietemann V. Go east for better honey bee health: Apis cerana is faster at hygienic behavior than A. mellifera. PLoS One, 2016, 11(9): e0162647.
[8]    Fries I, Wei H, Shi W, Chen S J. Grooming behavior and damaged mites (Varroa jacobsoni) in Apis cerana cerana and Apis mellifera ligustica. Apidologie, 1996, 27(1): 3-11.
[9]    周冰峰, 朱翔杰.论中华蜜蜂种质资源的保护//中国蜂业科技可持续发展学术研讨会暨蜂业科技与生态研讨会, 2008: 110-117.
ZHOU B F, ZHU X J. The protection of Apis cerana cerana//China Apicultural conference on sustainable development & apicultural technology and ecologyin Chinese), 2008: 110-117. (
[10]   Rath W. Co-adaptation of Apis cerana Fabr. and Varroa jacobsoni Oud. Apidologie, 1999, 30(2/3): 97-110.
[11]   Peng Y S, Fang Y, Xu S, Ge L. The resistance mechanism of the Asian honey bee, Apis ceranaFabr. to an ectoparasitic mite, Varroa jacobsoni Oudemans. Journal of Invertebrate Pathology, 1987, 49(1): 54-60.
[12]   龚一飞, 张其康. 蜜蜂分类与进化. 福州: 福建科学技术出版社, 2000: 21-26.
GONG Y F, ZHANG Q K. Classification and evolution ofin Chinese) Apis. Fuzhou: Fujian Science and Technology Press, 2000: 21-26. (
[13]   李红亮. 中华蜜蜂头部ests文库构建和主要触角特异蛋白基因克隆、定位及其表达鉴定[D]. 杭州: 浙江大学, 2007.
LI H L. Construction of cDNA libraries from head of bees, cloning, expression and subcellular localization of the antenna specific protein gene in the Chinese honeybee, Apis cerana cerana[D]. Hangzhou: Zhejiang University, 2007. (in Chinese)
[14]   Novaes E, Drost D R, Farmerie W G, Pappas G J, Grattapaglia D, Sederoff R R, Kirst M. High-throughput gene and SNP discovery in eucalyptus grandis, an uncharacterized genome. BMC Genomics, 2008, 9(1): 312.
[15]   Guo R, Wang S, Xue R, Cao G, Hu X, Huang M, Zhang Y, Lu Y, Zhu L, Chen F, LIANG Z, KUANG S, GONG C. The gene expression profile of resistant and susceptible bombyx mori strains reveals cypovirus-associated variations in host gene transcript levels. Applied Microbiology and Biotechnology, 2015, 99(12): 5175-5187.
[16]   Wang Z, Gerstein M, Snyder M. RNA-seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics, 2009, 10(1): 57-63.
[17]   Haas B J, Papanicolaou A, Yassour M, Grabherr M, Blood P D, Bowden J, Couger M B, Eccles D, Li B, Lieber M. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nature Protocols, 2013, 8(8): 1494-1512.
[18]   VAN Dijk E L, Auger H, JASZCZYSZYN Y, Thermes C. Ten years of next-generation sequencing technology. Trends in Genetics, 2014, 30(9): 418-426.
[19]   Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 2010, 28(5): 511-515.
[20]   Wang Z L, Liu T T, Huang Z Y, Wu X B, Yan W Y, Zeng Z J. Transcriptome analysis of the Asian honey bee Apis cerana cerana. PLoS One, 2012, 7(10): e47954.
[21]   Cornman R S, Bennett A K, Murray K D, Evans J D, Elsik C G, Aronstein K. Transcriptome analysis of the honey bee fungal pathogen, Ascosphaera apis: implications for host pathogenesis. BMC Genomics, 2012, 13: 285.
[22]   Park D, Jung J W, Choi B S, Jayakodi M, Lee J, Lim J, Yu Y, Choi Y S, Lee M L, Park Y. Uncovering the novel characteristics of Asian honey bee, Apis cerana, by whole genome sequencing. BMC Genomics, 2015, 16: 1.
[23]   梁勤, 张立卿. 利用微卫星标记分析福建4个中华蜜蜂群体的遗传多样性. 福建农林大学学报 (自然科学版), 2009, 38(4): 388-392.
LIANG Q, ZHANG L Q. Analysis of genetic diversity of four Apis cerana cerana populations in Fujian province with microsatellite markers. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2009, 38(4): 388-392. (in Chinese)
[24]   徐新建, 周姝婧, 朱翔杰, 周冰峰. 海南岛中华蜜蜂遗传多样性的微卫星dna分析. 昆虫学报, 2013, 56(5): 554-560.
XU X J, ZHOU S J, ZHU X j, ZHOU B f. Microsatellite DNA analysis of genetic diversity of Apis cerana cerana in Hainan Island, southern China. Acta Entomologica Sinica, 2013, 56(5): 554-560. (in Chinese)
[25]   于瀛龙, 周姝婧, 徐新建, 朱翔杰, 周冰峰. 长白山中华蜜蜂 (Apis cerana cerana)遗传多样性分析. 福建农林大学学报 (自然科学版), 2013, 42(6): 643-647.
YU Y L, ZHOU S J, XU X J, ZHU X J, ZHOU B F. Analysis on genetic diversity of Apis cerana cerana in Changbai Mountains. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2013, 42(6): 643-647. (in Chinese)
[26]   王倩, 孙亮先, 肖培新, 刘锋, 康明江, 胥保华. 室内人工培育中华蜜蜂幼虫技术研究. 山东农业科学, 2009(11): 113-116.
WANG Q, SUN L X, XIAO P X, LIU F, KANG M J, XU B H. Study on technology for indoor artificial feeding of Apis cerana cerana larvae. Shandong Agricultural Sciences, 2009(11): 113-116. (in Chinese)
[27]   Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Xian A, Fan L, Raychowdhury R, Zeng Q. Trinity: reconstructing a full-length transcriptome without a genome from RNA-seq data. Nature Biotechnology, 2011, 29(7): 644-652.
[28]   Gupta R K, Reybroeck W. Honeybee Pathogens and Their Management, 2014: Springer, Netherlands.
[29]   Somridhivej B, Wang S, Sha Z, Liu H, Quilang J, Xu P, Li P, Hu Z, Liu Z. Characterization, polymorphism assessment, and database construction for microsatellites from bac end sequences of channel catfish (Ictalurus punctatus): A resource for integration of linkage and physical maps. Aquaculture, 2008, 275(1/4): 76-80.
[30]   Gao X, Han J, Lu Z, Li Y, He C. Retracted: characterization of the spotted seal phoca largha transcriptome using Illumina paired-end sequencing and development of SSR markers. Comparative Biochemistry and Physiology-Part D: Genomics and Proteomics, 2012, 7(3): 277-284.
[1] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[2] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[3] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[4] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[5] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[6] SUN Yue,YANG HuiMin,HE RongRong,ZHANG JunXiang. Implantation and Persistence of Inoculated Active Dry Yeast in Industrial Wine Fermentations [J]. Scientia Agricultura Sinica, 2021, 54(9): 2006-2016.
[7] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[8] HU DongMei,JIANG Dong,LI YongPing,PENG Lei,LI DongYun,ZHU YanSong,YANG YunGuang. Identification of Bud Sport Mutation of Satsuma Mandarin by Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2021, 54(23): 5083-5096.
[9] WANG Yan,FAN BaoJie,CAO ZhiMin,ZHANG ZhiXiao,SU QiuZhu,WANG Shen,WANG XueQing,PENG XiuGuo,MEI Li,WU YuHua,LIU ShaoXing,TIAN ShengMin,XU JunJie,JIANG ChunZhi,WANG WeiJuan,LIU ChangYou,TIAN Jing. Quantitative Trait Locus Mapping of Bruchids Resistance Based on A Novel Genetic Linkage Map in Cowpea (Vigna unguiculata) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4740-4749.
[10] Xue CHEN,Rui WANG,FuYu JING,ShengSen ZHANG,LeDong JIA,MouZheng DUAN,Yu WU. Location and Linkage Markers for Candidate Interval of the White Petal Gene in Brassica napus L. by Next Generation Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(6): 1108-1117.
[11] ZhiJun XU,Sheng ZHAO,Lei XU,XiaoWen HU,DongSheng AN,Yang LIU. Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea) [J]. Scientia Agricultura Sinica, 2020, 53(4): 695-706.
[12] CHEN XiaoHong,HE JieLi,SHI TianTian,SHAO HuanHuan,WANG HaiGang,CHEN Ling,GAO ZhiJun,WANG RuiYun,QIAO ZhiJun. Developing SSR Markers of Proso Millet Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(10): 1940-1949.
[13] KOU ShuJun, HUO AHong, FU GuoQing, JI JunJian, WANG Yao, ZUO ZhenXing, LIU MinXuan, LU Ping. Genetic Diversity and Population Structure of Broomcorn Millet in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2019, 52(9): 1475-1477.
[14] CHANG JiaYing,LIU ShuSen,MA HongXia,SHI Jie,GUO Ning,ZHANG HaiJian. Genetic Diversity Analysis of Curvularia lunata in Summer Maize in Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2019, 52(5): 822-836.
[15] WU BingChao, TONG Lei, DU ZhaoChang, HU JiaLing, ZHANG Huan, CHEN Yi, LIU Wei, ZHANG XinQuan, HUANG LinKai. Mutagenic Effects of 60Co-γ-rays on Two Species of Pennisetum Genus Forages [J]. Scientia Agricultura Sinica, 2019, 52(3): 414-427.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!